Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation

被引:153
作者
Barlow, Kyle A. [1 ]
Conchuir, Shane O. [2 ,3 ]
Thompson, Samuel [4 ]
Suresh, Pooja [4 ]
Lucas, James E. [5 ]
Heinonen, Markus [6 ,7 ]
Kortemme, Tanja [1 ,2 ,3 ,4 ,5 ,8 ]
机构
[1] Univ Calif San Francisco, Grad Program Bioinformat, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Grad Program Biophys, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Grad Program Bioengn, San Francisco, CA 94143 USA
[6] Aalto Univ, Dept Comp Sci, Espoo, Finland
[7] HITT, Helsinki, Finland
[8] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
基金
芬兰科学院; 美国国家科学基金会;
关键词
ENERGY FUNCTION; CONFORMATIONAL VARIABILITY; STABILITY PREDICTIONS; BACKBONE ENSEMBLES; RATIONAL DESIGN; HOT-SPOTS; IMPROVES; COMPLEXES; MODEL; FLEXIBILITY;
D O I
10.1021/acs.jpcb.7b11367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computationally modeling changes in binding free energies upon mutation (interface Delta Delta G) allows large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that consider and sample relevant conformational plasticity should be able to achieve higher prediction accuracy over methods that do not. To test this hypothesis, we developed a method within the Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using "backrub" to generate an ensemble of models and then applies torsion minimization, side chain repacking, and averaging across this ensemble to estimate interface Delta Delta G values. We tested our method on a curated benchmark set of 1240 mutants, and found the method outperformed existing methods that sampled conformational space to a lesser degree. We observed considerable improvements with flex ddG over existing methods on the subset of small side chain to large side chain mutations, as well as for multiple simultaneous non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen interfaces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta energy function; the resulting nonlinear reweighting model improved the agreement with experimentally determined interface Delta Delta G values but also highlighted the necessity of future energy function improvements.
引用
收藏
页码:5389 / 5399
页数:11
相关论文
共 62 条
  • [1] The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design
    Alford, Rebecca F.
    Leaver-Fay, Andrew
    Jeliazkov, Jeliazko R.
    O'Meara, Matthew J.
    DiMaio, Frank P.
    Park, Hahnbeom
    Shapovalov, Maxim V.
    Renfrew, P. Douglas
    Mulligan, Vikram K.
    Kappel, Kalli
    Labonte, Jason W.
    Pacella, Michael S.
    Bonneau, Richard
    Bradley, Philip
    Dunbrack, Roland L., Jr.
    Das, Rhiju
    Baker, David
    Kuhlman, Brian
    Kortemme, Tanja
    Gray, Jeffrey J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) : 3031 - 3048
  • [2] [Anonymous], SCI STKE
  • [3] The Effect of Conformational Flexibility on Binding Free Energy Estimation between Kinases and Their Inhibitors
    Araki, Mitsugu
    Kamiya, Narutoshi
    Sato, Miwa
    Nakatsui, Masahiko
    Hirokawa, Takatsugu
    Okuno, Yasushi
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (12) : 2445 - 2456
  • [4] Predicting free energy changes using structural ensembles
    Benedix, Alexander
    Becker, Caroline M.
    de Groot, Bert L.
    Caflisch, Amedeo
    Boeckmann, Rainer A.
    [J]. NATURE METHODS, 2009, 6 (01) : 3 - 4
  • [5] Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130
    Boulanger, MJ
    Bankovich, AJ
    Kortemme, T
    Baker, D
    Garcia, KC
    [J]. MOLECULAR CELL, 2003, 12 (03) : 577 - 589
  • [6] Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles
    Brender, Jeffrey R.
    Zhang, Yang
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (10)
  • [7] Massively parallel de novo protein design for targeted therapeutics
    Chevalier, Aaron
    Silva, Daniel-Adriano
    Rocklin, Gabriel J.
    Hicks, Derrick R.
    Vergara, Renan
    Murapa, Patience
    Bernard, Steffen M.
    Zhang, Lu
    Lam, Kwok-Ho
    Yao, Guorui
    Bahl, Christopher D.
    Miyashita, Shin-Ichiro
    Goreshnik, Inna
    Fuller, James T.
    Koday, Merika T.
    Jenkins, Cody M.
    Colvin, Tom
    Carter, Lauren
    Bohn, Alan
    Bryan, Cassie M.
    Alejandro Fernandez-Velasco, D.
    Stewart, Lance
    Dong, Min
    Huang, Xuhui
    Jin, Rongsheng
    Wilson, Ian A.
    Fuller, Deborah H.
    Baker, David
    [J]. NATURE, 2017, 550 (7674) : 74 - +
  • [8] Design, activity, and structure of a highly specific artificial endonuclease
    Chevalier, BS
    Kortemme, T
    Chadsey, MS
    Baker, D
    Monnat, RJ
    Stoddard, BL
    [J]. MOLECULAR CELL, 2002, 10 (04) : 895 - 905
  • [9] HIGH-RESOLUTION EPITOPE MAPPING OF HGH-RECEPTOR INTERACTIONS BY ALANINE-SCANNING MUTAGENESIS
    CUNNINGHAM, BC
    WELLS, JA
    [J]. SCIENCE, 1989, 244 (4908) : 1081 - 1085
  • [10] Prediction of Stable Globular Proteins Using Negative Design with Non-native Backbone Ensembles
    Davey, James A.
    Damry, Adam M.
    Euler, Christian K.
    Goto, Natalie K.
    Chica, Roberto A.
    [J]. STRUCTURE, 2015, 23 (11) : 2011 - 2021