Markov triples with k-generalized Fibonacci components

被引:4
作者
Gomez, Carlos A. [1 ]
Gomez, Jhonny C. [1 ]
Luca, Florian [2 ,3 ,4 ]
机构
[1] Univ Valle, Dept Matemat, Cali, Colombia
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[3] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, Jeddah, Saudi Arabia
[4] UNAM, Ctr Ciencias Matemat, Morelia, Michoacan, Mexico
来源
ANNALES MATHEMATICAE ET INFORMATICAE | 2020年 / 52卷
关键词
Markov equation; Markov triples; k-generalized Fibonacci numbers; k-Fibonacci numbers;
D O I
10.33039/ami.2020.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find all triples (x, y, z) of k-Fibonacci numbers which satisfy the Markov equation x(2) + y(2) + z(2) = 3xyz. This paper continues and extends previous work by Luca and Srinivasan [6].
引用
收藏
页码:107 / 115
页数:9
相关论文
共 8 条
[1]   POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Luca, Florian .
MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) :85-100
[2]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
[3]  
Dresden GPB, 2014, J INTEGER SEQ, V17
[4]   AN EXPONENTIAL DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF TWO CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS [J].
Gomez Ruiz, Carlos Alexis ;
Luca, Florian .
COLLOQUIUM MATHEMATICUM, 2014, 137 (02) :171-188
[5]  
Hua LK, 1981, APPL NUMBER THEORY N
[6]  
Luca F, 2018, FIBONACCI QUART, V56, P126
[7]  
Sloane N.J.A., The on-line encyclopedia of integer sequences (A007323), DOI DOI 10.1371/journal.pone.0096223
[8]  
Wolfram DA, 1998, FIBONACCI QUART, V36, P129