Hybridization of independent component analysis, rough sets, and multi-objective evolutionary algorithms for classificatory decomposition of cortical evoked potentials

被引:0
|
作者
Smolinski, Tomasz G. [1 ]
Boratyn, Grzegorz M. [2 ]
Milanova, Mariofanna [3 ]
Buchanan, Roger [4 ]
Prinz, Astrid A. [1 ]
机构
[1] Emory Univ, Dept Biol, Atlanta, GA 30322 USA
[2] Univ Louisville, Kidney Dis Program, Louisville, KY 40292 USA
[3] Univ Arkansas, Dept Comp Sci, Little Rock, AR 72204 USA
[4] Arkansas State Univ, Dept Biol, State Univ, AR 72467 USA
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article presents a continuation of our research aiming at improving the effectiveness of signal decomposition algorithms by providing them with "classification-awareness." We investigate hybridization of multi-objective evolutionary algorithms (MOEA) and rough sets (RS) to perform the task of decomposition in the light of the underlying classification problem itself. In this part of the study, we also investigate the idea of utilizing the Independent Component Analysis (ICA) to initialize the population in the MOEA.
引用
收藏
页码:174 / +
页数:2
相关论文
共 50 条
  • [21] Analysis of Evolutionary Algorithms using Multi-Objective Parameter Tuning
    Ugolotti, Roberto
    Cagnoni, Stefano
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 1343 - 1350
  • [22] Evolutionary Method for Weight Vector Generation in Multi-Objective Evolutionary Algorithms based on Decomposition and Aggregation
    Meneghini, Ivan Reinaldo
    Guimaraes, Frederico Gadelha
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1900 - 1907
  • [23] Decompositional independent component analysis using multi-objective optimization
    Goh, Sim Kuan
    Abbass, Hussein A.
    Tan, Kay Chen
    Al-Mamun, Abdullah
    SOFT COMPUTING, 2016, 20 (04) : 1289 - 1304
  • [24] Decompositional independent component analysis using multi-objective optimization
    Sim Kuan Goh
    Hussein A. Abbass
    Kay Chen Tan
    Abdullah Al-Mamun
    Soft Computing, 2016, 20 : 1289 - 1304
  • [25] Use of Reference Point Sets in a Decomposition-Based Multi-Objective Evolutionary Algorithm
    Manoatl Lopez, Edgar
    Coello Coello, Carlos A.
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT I, 2018, 11101 : 372 - 383
  • [26] A Comparative Study on Decomposition-Based Multi-objective Evolutionary Algorithms for Many-Objective Optimization
    Ma, Xiaoliang
    Yang, Junshan
    Wu, Nuosi
    Ji, Zhen
    Zhu, Zexuan
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2477 - 2483
  • [27] A Weight Vector Adjustment Method for Decomposition-Based Multi-Objective Evolutionary Algorithms
    Cheng, Haibing
    Li, Lin
    You, Ling
    IEEE ACCESS, 2023, 11 : 42324 - 42330
  • [28] A Direct Local Search Mechanism for Decomposition-based Multi-Objective Evolutionary Algorithms
    Zapotecas Martinez, Saul
    Coello Coello, Carlos A.
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [29] A Dynamic Parameter Tuning Strategy for Decomposition-Based Multi-Objective Evolutionary Algorithms
    Zheng, Jie
    Ning, Jiaxu
    Ma, Hongfeng
    Liu, Ziyi
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [30] Multiple Criteria Performance Analysis of Non-dominated Sets Obtained by Multi-objective Evolutionary Algorithms for Optimisation
    Janssens, Gerrit K.
    Pangilinan, Jose Maria
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, 2010, 339 : 94 - +