The quantum tropical vertex

被引:26
作者
Bousseau, Pierrick [1 ,2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Swiss Fed Inst Technol, Inst Theoret Studies, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
GROMOV-WITTEN THEORY; GOPAKUMAR-VAFA INVARIANTS; STABLE LOGARITHMIC MAPS; DONALDSON-THOMAS THEORY; PAIRS; COHOMOLOGY; GEOMETRY; CURVES; MODULI; SPACES;
D O I
10.2140/gt.2020.24.1297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gross, Pandharipande and Siebert have shown that the 2-dimensional Kontsevich- Soibelman scattering diagrams compute certain genus-zero log Gromov-Witten invariants of log Calabi-Yau surfaces. We show that the q-refined 2-dimensional Kontsevich-Soibelman scattering diagrams compute, after the change of variables q = e(i (h) over bar), generating series of certain higher-genus log Gromov-Witten invariants of log Calabi-Yau surfaces. This result provides a mathematically rigorous realization of the physical derivation of the refined wall-crossing formula from topological string theory proposed by Cecotti and Vafa and, in particular, can be viewed as a nontrivial mathematical check of the connection suggested by Witten between higher-genus open A-model and Chem-Simons theory. We also prove some new BPS integrality results and propose some other BPS integrality conjectures.
引用
收藏
页码:1297 / 1379
页数:83
相关论文
共 71 条
  • [1] Abramovich D, 2017, DECOMPOSITION DEGENE
  • [2] Abramovich D, 2019, PREPRINT
  • [3] Abramovich D, 2008, AM J MATH, V130, P1337
  • [4] Birational invariance in logarithmic Gromov-Witten theory
    Abramovich, Dan
    Wise, Jonathan
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (03) : 595 - 620
  • [5] COMPARISON THEOREMS FOR GROMOV-WITTEN INVARIANTS OF SMOOTH PAIRS AND OF DEGENERATIONS
    Abramovich, Dan
    Marcus, Steffen
    Wise, Jonathan
    [J]. ANNALES DE L INSTITUT FOURIER, 2014, 64 (04) : 1611 - 1667
  • [6] STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II
    Abramovich, Dan
    Chen, Qile
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) : 465 - 488
  • [7] [Anonymous], 1998, Ergeb. Math. Grenzgeb.
  • [8] [Anonymous], 2017, PREPRINT
  • [9] Beauville A., 1995, GEOMETRY ANAL, P37
  • [10] Refined curve counting with tropical geometry
    Block, Florian
    Goettsche, Lothar
    [J]. COMPOSITIO MATHEMATICA, 2016, 152 (01) : 115 - 151