Thermal reactivity study of spinel lithium titanium oxide material for lithium ion battery by thermal and spectral analysis

被引:5
作者
Yu, Hai-Ying [1 ,2 ]
Zhang, Ding [3 ]
Zhu, Zhi [1 ]
Lu, Qi [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Inst Appl Chem, New Energy Mat & Technol Lab, Beijing 100871, Peoples R China
[2] Inner Mongolia Univ Technol, Coll Chem Engn, Inst Coal Convers & Cycl Econ, Hohhot 010051, Inner Mongolia, Peoples R China
[3] Taiyuan Univ Technol, Coll Chem & Chem Engn, Dept Appl Chem, Taiyuan 030024, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Lithium-ion secondary battery; Lithium titanate; Thermal reactivity; State of charge; ALL-SOLID-STATE; GRAPHITE ANODES; STABILITY; LI4TI5O12; ELECTROLYTE; PERFORMANCE; SAFETY; CALORIMETRY;
D O I
10.1016/j.jpowsour.2014.01.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports the study on thermal reactivity of spinet lithium titanium oxide (Li4Ti5O12) material. Thermalgravimetry and Differential scanning calorimetry (TG/DSC) is used to investigate the relevant profiles of Li4Ti5O12 and Li7Ti5O12 electrodes. TG results show Li7Ti5O12 electrode material has higher thermal weight loss, which is 26.7% below 600 degrees C, significantly larger than that of 20.4% for Li4Ti5O12 electrode. Moreover, the onset exothermal temperature for Li7Ti5O12 electrode material is lower and total exothermal energy is higher. Fourier transform infrared (FT-IR) spectroscopy confirms that more C=O group containing compound are generated on Li7Ti5O12 electrode. One species can be decomposed below 460 C, and the other one can be decomposed below 600 degrees C. It is conclude that the aforementioned two species leads to higher thermal reaction of Li7Ti5O12 electrode. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 27 条
[1]   Low temperature performance of nanophase Li4Ti5O12 [J].
Allen, J. L. ;
Jow, T. R. ;
Wolfenstine, J. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :1340-1345
[2]   Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications [J].
Amine, K ;
Liu, J ;
Kang, S ;
Belharouak, I ;
Hyung, Y ;
Vissers, D ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2004, 129 (01) :14-19
[3]   Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications [J].
Belharouak, Ilias ;
Koenig, Gary M., Jr. ;
Amine, K. .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10344-10350
[4]   On safety of lithium-ion cells [J].
Biensan, P ;
Simon, B ;
Pérès, JP ;
de Guibert, A ;
Broussely, M ;
Bodet, JM ;
Perton, F .
JOURNAL OF POWER SOURCES, 1999, 81 :906-912
[5]   Electrochemical properties and thermal stability of LiaNi1-xCoxO2 cathode materials [J].
Cho, JP ;
Jung, HS ;
Park, YC ;
Kim, GB ;
Lim, HS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :15-20
[6]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[7]   Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery [J].
Dedryvere, R. ;
Foix, D. ;
Franger, S. ;
Patoux, S. ;
Daniel, L. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (24) :10999-11008
[8]  
Du Pasquier A, 1998, J ELECTROCHEM SOC, V145, P472
[9]  
Gao YA, 1998, ELECTROCHEM SOLID ST, V1, P117, DOI 10.1149/1.1390656
[10]   Effects of solvents and salts on the thermal stability of LiC6 [J].
Jiang, JW ;
Dahn, JR .
ELECTROCHIMICA ACTA, 2004, 49 (26) :4599-4604