Thermal oxidation and facet-formation mechanisms of Si nanowires

被引:1
作者
Kioseoglou, J. [1 ]
Komninou, Ph. [1 ]
Zervos, M. [2 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, NMMG, Thessaloniki 54124, Greece
[2] Univ Cyprus, Nanotechnol Res Ctr, Nanostruct Mat & Devices Lab, CY-1678 Nicosia, Cyprus
[3] Univ Cyprus, Dept Mech Engn, CY-1678 Nicosia, Cyprus
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2014年 / 8卷 / 04期
关键词
silicon; nanowires; oxidation; facets; SILICON NANOWIRES; GROWTH;
D O I
10.1002/pssr.201308280
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon nanowires were grown along the [111] direction on Si(001) by the vapor-liquid-solid mechanism using 1 nm Au as a catalyst. They were subsequently oxidized at 900 degrees C for 60 min, 120 min and 180 min, which lead to the formation of a circular shell of amorphous SiO2 surrounding the Si core defined by primary (202), (220) (022) and secondary (422) crystal facets that form a polygon with nine sides having a lower symmetry compared to the hexagonal shape of the Si nanowires before oxidation. We explain the facet-formation mechanism by the oxidation of alternate vertices of the original hexagon, which leads to the appearance of higher index crystallographic planes tangential to a circle corresponding to the energetically favorable core geometry. ((c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
引用
收藏
页码:307 / 311
页数:5
相关论文
共 50 条
[41]   Formation and Characterization of Multilayer GeSi Nanowires on Miscut Si (001) Substrates [J].
Gong, Hua ;
Chen, Peixuan ;
Ma, Yingjie ;
Wang, Lijun ;
Rastelli, Armando ;
Schmidt, Oliver G. ;
Zhong, Zhenyang .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) :834-838
[42]   Effect of reaction temperature on formation of α-Si3N4 nanowires by a simple CVD method [J].
Yin, Li ;
Zhao, Kai ;
Ma, Zhihong ;
Fan, Rongzheng ;
He, Zhen ;
Huang, Saifang .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (09N11)
[43]   Growth of coaxial nanowires by thermal oxidation of Ti64 alloy [J].
Dinan, B. J. ;
Dregia, S. A. ;
Akbar, S. A. .
MATERIALS TECHNOLOGY, 2013, 28 (05) :280-285
[44]   Si and SiGe Nanowires: Fabrication Process and Thermal Conductivity Measurement by 3ω-Scanning Thermal Microscopy [J].
Grauby, Stephane ;
Puyoo, Etienne ;
Rampnoux, Jean-Michel ;
Rouviere, Emmanuelle ;
Dilhaire, Stefan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) :9025-9034
[45]   Formation, rapid thermal oxidation and passivation of solar grade silicon nanowires for advanced photovoltaic applications [J].
Ben Jaballah, Abdelkader ;
Moumni, Besma ;
Bessais, Brahim .
SOLAR ENERGY, 2012, 86 (06) :1955-1961
[46]   Mechanisms of oxidation of pure and Si-segregated α-Ti surfaces [J].
Bhattacharya, Somesh Kr ;
Sahara, Ryoji ;
Suzuki, Satoshi ;
Ueda, Kyosuke ;
Narushima, Takayuki .
APPLIED SURFACE SCIENCE, 2019, 463 :686-692
[47]   Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires [J].
Zhang, Xiaolong ;
Jevasuwan, Wipakorn ;
Sugimoto, Yoshimasa ;
Fukata, Naoki .
ACS NANO, 2019, 13 (11) :13403-13412
[48]   Interfacial intermixing of Ge/Si core-shell nanowires by thermal annealing [J].
Zhang, Xiaolong ;
Jevasuwan, Wipakorn ;
Fukata, Naoki .
NANOSCALE, 2020, 12 (14) :7572-7576
[49]   Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate [J].
Yamaguchi, Masahito ;
Paek, Ji-Hyun ;
Amano, Hiroshi .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-5
[50]   Tuning Thermal Conductivity in Si Nanowires with Patterned Structures [J].
Zhu, Gui-ping ;
Zhao, Chang-wei ;
Wang, Xi-wen ;
Wang, Jian .
CHINESE PHYSICS LETTERS, 2021, 38 (02)