DESIGN AND IMPLEMENTATION OF SQUARED AND OCTAGONAL W-BAND CMOS MARCHAND BALUNS FOR W-BAND COMMUNICATION SYSTEMS

被引:10
|
作者
Lin, Yo-Sheng [1 ]
Liu, Feng-Chen [1 ]
Wen, Wei-Chen [1 ]
机构
[1] Natl Chi Nan Univ, Dept Elect Engn, Puli, Taiwan
关键词
CMOS; W-band; Marchand balun; direct-conversion transceiver; double-balanced mixer; UP-CONVERSION MIXER; TRANSFORMERS; GAIN; LNA;
D O I
10.1002/mop.28565
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An enhanced squared and an enhanced octagonal W-band CMOS Marchand baluns for direct-conversion transceiver are reported. These Marchand baluns can be applied to an up-conversion mixer for converting the single local oscillator input signal into differential signal, and converting the differential RF output signal to single signal. They can also be applied to a subharmonic down-conversion mixer for converting the single RF input signal into differential signal. Instead of the traditional Marchand balun structure that uses three sections of thin (0.53 mu m) M-5 interconnection lines (underneath the thick (2.34 mu m) M-6 main structure), the proposed balun structures use only one section of thin M-5 interconnection line to improve S-21 and S-31. The squared Marchand balun occupies a small chip area of 0.0313 mm(2), and achieves S-21 of -4.19 to -4.53 dB, S-31 of -4.28 similar to to -4.42 dB, magnitude of amplitude imbalance (MAI) smaller than 0.11 dB and deviation of phase difference (DPD) smaller than 4.3 degrees for frequencies 75 similar to 285 GHz. The octagonal Marchand balun occupies a small chip area of 0.0288 mm(2), and achieves S-21 of -4.56 to -5.03 dB, S-31 of -4.56 to -4.86 dB, MAI smaller than 0.18 dB and DPD smaller than 2 degrees for frequencies 75-85 GHz. The state-of-the-art results of these proposed baluns indicate that they are suitable for W-band communication systems. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:2205 / 2211
页数:7
相关论文
共 50 条
  • [1] Design of W-Band Tripler
    Tao Yang
    Ren Hou Liu
    Wei Gan Lin
    International Journal of Infrared and Millimeter Waves, 2000, 21 : 271 - 276
  • [2] Design of W-band tripler
    Yang, T
    Liu, RH
    Lin, WG
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2000, 21 (02): : 271 - 276
  • [3] Investigation of analogue communication at W-band
    2001, Univ. of Electronic Science and Technology of China (30):
  • [4] mm-Wave Communication Systems at W-Band
    樊勇
    吴正德
    唐小宏
    JournalofElectronicScienceandTechnologyofChina, 2005, (04) : 289 - 292
  • [5] A CMOS Integrated W-band Passive Imager
    Gu, Qun Jane
    Yang, Kang
    Xue, Yi
    Xu, Zhiwei
    Tang, Adrian
    Nien, C. C.
    Wu, T. H.
    Tarng, J. H.
    Chang, Mau-Chung Frank
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (11) : 736 - 740
  • [6] W-band 90nm CMOS LNA Design
    Liao, Chien-Hsiung
    Hsieh, Cheng-Huang
    Hu, Robert
    Niu, Dow-Chih
    Shiao, Yu-Shao
    2012 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC 2012), 2012, : 430 - 432
  • [7] Design of an Overmoded W-band TWT
    Comfoltey, E. Nicholas
    Shapiro, Michael A.
    Sirigiri, Jagadishwar R.
    Temkin, Richard J.
    2009 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE, 2009, : 127 - 128
  • [8] W-BAND POWER COMBINER DESIGN
    CHANG, K
    EBERT, RL
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1980, 28 (04) : 295 - 305
  • [9] CMOS Frequency Generation System for W-Band Radars
    Zhang, Ning
    Kenneth, K. O.
    2009 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2009, : 126 - 127
  • [10] Distance and dynamics determination by W-band DEER and W-band ST-EPR
    Likai Song
    Mioara Larion
    Jean Chamoun
    Marco Bonora
    Piotr G. Fajer
    European Biophysics Journal, 2010, 39 : 711 - 719