A functional design and synthesization for electrocatalytic hydrogen evolution material on MoS2/Co3S4 hybrid hollow nanostructure

被引:46
作者
Lei, Xiang [1 ]
Yu, Ke [1 ,2 ]
Li, Honglin [1 ,3 ]
Zhu, Ziqiang [1 ]
机构
[1] East China Normal Univ, Minist Educ China, Dept Elect Engn, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Chongqing Normal Univ, Coll Phys & Elect Engn, Chongqing 401331, Peoples R China
关键词
Hydrogen evolution reaction; MoS2; Co3S4; Hybrid-catalyst; MOS2; NANOSHEETS; EFFICIENT; CATALYSTS; POLYHEDRA; SULFIDE; OXIDE;
D O I
10.1016/j.electacta.2018.03.023
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A central challenge in large scale sustainable hydrogen production by electrolyzing water is to develop efficient and economical electocatalysts with nanostructural materials. This work herein reports the facile solvothermal synthesis of MoS2/Co3S4 hollow nanostructural co-catalyst with high activity and stability for electrochemical hydrogen evolution reaction (HER) by compositing cheap and HER-active MoS2 on Co3S4 HER catalyst. By morphology and structure modulations, this high-quality nano-structure, which is confirmed by several characterizing techniques, can be considered as excellent catalyst to split water into H-2 in a wide pH range via the electric drive. Corresponding electrochemical measurement results of 55.6 mV dec(-1) and 115.3 mV dec(-1) Tafel slope in acid (pH = 0.3) and alkaline (pH = 14) media demonstrates our predictions. We believe that such performance improvement is mainly due to the much increased active sites for catalysis because of composition process and hollow structure. These findings open up an effective and propagable strategy for nanostructural HER catalysts synthesis. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 273
页数:12
相关论文
共 44 条
[1]   Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces [J].
Akhade, Sneha A. ;
Kitchin, John R. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (08)
[2]  
[Anonymous], 2015, NAT COMMUN
[3]   Hydrogen evolution on nano-particulate transition metal sulfides [J].
Bonde, Jacob ;
Moses, Poul G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
FARADAY DISCUSSIONS, 2008, 140 :219-231
[4]   Vertically Aligned Interlayer Expanded MoS2 Nanosheets on a Carbon Support for Hydrogen Evolution Electrocatalysis [J].
Chatti, Manjunath ;
Gengenbach, Thomas ;
King, Russell ;
Spiccia, Leone ;
Simonov, Alexandr N. .
CHEMISTRY OF MATERIALS, 2017, 29 (07) :3092-3099
[5]   From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis [J].
Chen, Yu-Zhen ;
Wang, Chengming ;
Wu, Zhen-Yu ;
Xiong, Yujie ;
Xu, Qiang ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
ADVANCED MATERIALS, 2015, 27 (34) :5010-5016
[6]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[7]   Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides [J].
Chia, Xinyi ;
Eng, Alex Yong Sheng ;
Ambrosi, Adriano ;
Tan, Shu Min ;
Pumera, Martin .
CHEMICAL REVIEWS, 2015, 115 (21) :11941-11966
[8]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[9]   Water Oxidation Electrocatalyzed by an Efficient Mn3O4/CoSe2 Nanocomposite [J].
Gao, Min-Rui ;
Xu, Yun-Fei ;
Jiang, Jun ;
Zheng, Ya-Rong ;
Yu, Shu-Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2930-2933
[10]   Ultrathin MoS2(1-x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction [J].
Gong, Qiufang ;
Cheng, Liang ;
Liu, Changhai ;
Zhang, Mei ;
Feng, Qingliang ;
Ye, Hualin ;
Zeng, Min ;
Xie, Liming ;
Liu, Zhuang ;
Li, Yanguang .
ACS CATALYSIS, 2015, 5 (04) :2213-2219