A Machine-Learning Approach for Detection and Quantification of QRS Fragmentation

被引:30
|
作者
Goovaerts, Griet [1 ,2 ]
Padhy, Sibasankar [1 ,2 ]
Vandenberk, Bert [3 ]
Varon, Carolina [1 ,2 ]
Willems, Rik [3 ]
Van Huffel, Sabine [1 ,2 ]
机构
[1] Katholieke Univ Leuven, STADIUS, Dept Elect Engn, B-3001 Leuven, Belgium
[2] IMEC, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Cardiovasc Dis, Expt Cardiol, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
ECG signal processing; phase rectified signal averaging; QRS fragmentation; variational mode decomposition; machine learning; support vector machine; ECG; SEGMENTATION; PREDICTOR;
D O I
10.1109/JBHI.2018.2878492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Fragmented QRS (fQRS) is an accessible biomarker and indication of myocardial scarring that can be detected from the electrocardiogram (ECG). Nowadays, fQRS scoring is done on a visual basis, which is time consuming and leads to subjective results. This study proposes an automated method to detect and quantify fQRS in a continuous way using features extracted from variational mode decomposition (VMD) and phase-rectified signal averaging (PRSA). Methods: In the proposed framework, QRS complexes in the ECG signals were first segmented using VMD. Then, ten VMD- and PRSA-based features were computed and fed into well-known classifiers such as support vector machine (SVM), K-nearest neighbors (KNN), Naive Bayesian (NB), and TreeBagger (TB) in order to compare their performance. The proposed method was evaluated with 12-lead ECG data of 616 patients from the University Hospitals Leuven. The presence of fQRS in each ECG lead was scored by five raters. Both detection and quantification of fQRS could be achieved in this way. Results: The experimental results indicated that the proposed method achieved AUC values of 0.95, 0.94, 0.90, and 0.89 using SVM, KNN, NB, and TB classifiers, respectively, for detecting QRS fragmentation. Assessment of quantification performance was done by comparing the fQRS score with the total score, obtained by summing the scores from the individual raters. Results showed that the fQRS score clearly correlated with this estimate of fQRS certainty. Conclusion: The proposed method obtained good results in both fQRS detection and quantification, and is a novel way of assessing the certainty of QRS fragmentation in the ECG signal.
引用
收藏
页码:1980 / 1989
页数:10
相关论文
共 50 条
  • [31] Machine-learning approach improves deepwater facility uptime
    Singh, Ajay
    Sankaran, Sathish
    Ambre, Sachin
    1600, Society of Petroleum Engineers (SPE) (72): : 54 - 55
  • [32] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [33] Towards an integrated machine-learning framework for model evaluation and uncertainty quantification
    Buisson, Bertrand
    Lakehal, Djamel
    NUCLEAR ENGINEERING AND DESIGN, 2019, 354
  • [34] Automated coding of implicit motives: A machine-learning approach
    Joyce S. Pang
    Hiram Ring
    Motivation and Emotion, 2020, 44 : 549 - 566
  • [35] Automated coding of implicit motives: A machine-learning approach
    Pang, Joyce S.
    Ring, Hiram
    MOTIVATION AND EMOTION, 2020, 44 (04) : 549 - 566
  • [36] A new approach of clustering based machine-learning algorithm
    Al-Omary, Alauddin Yousif
    Jamil, Mohammad Shahid
    KNOWLEDGE-BASED SYSTEMS, 2006, 19 (04) : 248 - 258
  • [37] Optimizing Count Responses in Surveys: A Machine-learning Approach
    Fu, Qiang
    Guo, Xin
    Land, Kenneth C.
    SOCIOLOGICAL METHODS & RESEARCH, 2020, 49 (03) : 637 - 671
  • [38] Machine-learning approach to the design of OSDAs for zeolite beta
    Daeyaert, Frits
    Ye, Fengdan
    Deem, Michael W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (09) : 3413 - 3418
  • [39] Overachieving Municipalities in Public Health: A Machine-learning Approach
    Porto Chiavegatto Filho, Alexandre Dias
    dos Santos, Hellen Geremias
    do Nascimento, Carla Ferreira
    Massa, Kaio
    Kawachi, Ichiro
    EPIDEMIOLOGY, 2018, 29 (06) : 836 - 840
  • [40] Detection of cognitive impairment using a machine-learning algorithm
    Youn, Young Chul
    Choi, Seong Hye
    Shin, Hae-Won
    Kim, Ko Woon
    Jang, Jae-Won
    Jung, Jason J.
    Hsiung, Ging-Yuek Robin
    Kim, SangYun
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2018, 14 : 2939 - 2945