A Machine-Learning Approach for Detection and Quantification of QRS Fragmentation

被引:30
|
作者
Goovaerts, Griet [1 ,2 ]
Padhy, Sibasankar [1 ,2 ]
Vandenberk, Bert [3 ]
Varon, Carolina [1 ,2 ]
Willems, Rik [3 ]
Van Huffel, Sabine [1 ,2 ]
机构
[1] Katholieke Univ Leuven, STADIUS, Dept Elect Engn, B-3001 Leuven, Belgium
[2] IMEC, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Cardiovasc Dis, Expt Cardiol, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
ECG signal processing; phase rectified signal averaging; QRS fragmentation; variational mode decomposition; machine learning; support vector machine; ECG; SEGMENTATION; PREDICTOR;
D O I
10.1109/JBHI.2018.2878492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Fragmented QRS (fQRS) is an accessible biomarker and indication of myocardial scarring that can be detected from the electrocardiogram (ECG). Nowadays, fQRS scoring is done on a visual basis, which is time consuming and leads to subjective results. This study proposes an automated method to detect and quantify fQRS in a continuous way using features extracted from variational mode decomposition (VMD) and phase-rectified signal averaging (PRSA). Methods: In the proposed framework, QRS complexes in the ECG signals were first segmented using VMD. Then, ten VMD- and PRSA-based features were computed and fed into well-known classifiers such as support vector machine (SVM), K-nearest neighbors (KNN), Naive Bayesian (NB), and TreeBagger (TB) in order to compare their performance. The proposed method was evaluated with 12-lead ECG data of 616 patients from the University Hospitals Leuven. The presence of fQRS in each ECG lead was scored by five raters. Both detection and quantification of fQRS could be achieved in this way. Results: The experimental results indicated that the proposed method achieved AUC values of 0.95, 0.94, 0.90, and 0.89 using SVM, KNN, NB, and TB classifiers, respectively, for detecting QRS fragmentation. Assessment of quantification performance was done by comparing the fQRS score with the total score, obtained by summing the scores from the individual raters. Results showed that the fQRS score clearly correlated with this estimate of fQRS certainty. Conclusion: The proposed method obtained good results in both fQRS detection and quantification, and is a novel way of assessing the certainty of QRS fragmentation in the ECG signal.
引用
收藏
页码:1980 / 1989
页数:10
相关论文
共 50 条
  • [1] Interruption Detection for Detection and Quantification of QRS Fragmentation Based on Machine Learning and Deep Learning Technique
    Banu, Afsana
    Manjunath, K. G.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 669 - 677
  • [2] A machine-learning approach to negation and speculation detection for sentiment analysis
    Cruz, Noa P.
    Taboada, Maite
    Mitkov, Ruslan
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2016, 67 (09) : 2118 - 2136
  • [3] A Machine-Learning Approach to Negation and Speculation Detection in Clinical Texts
    Cruz Diaz, Noa P.
    Mana Lopez, Manuel J.
    Mata Vazquez, Jacinto
    Pachon Alvarez, Victoria
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2012, 63 (07): : 1398 - 1410
  • [4] A machine-learning approach for nonalcoholic steatohepatitis susceptibility estimation
    Fatemeh Ghadiri
    Abbas Ali Husseini
    Oğuzhan Öztaş
    Indian Journal of Gastroenterology, 2022, 41 : 475 - 482
  • [5] Machine-Learning Approach to Analysis of Driving Simulation Data
    Yoshizawa, Akira
    Nishiyama, Hiroyuki
    Iwasaki, Hirotoshi
    Mizoguchi, Fumio
    2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 398 - 402
  • [6] A machine-learning approach for nonalcoholic steatohepatitis susceptibility estimation
    Ghadiri, Fatemeh
    Husseini, Abbas Ali
    Oztas, Oguzhan
    INDIAN JOURNAL OF GASTROENTEROLOGY, 2022, 41 (05) : 475 - 482
  • [7] Analysis and prediction of Indian stock market: a machine-learning approach
    Shilpa Srivastava
    Millie Pant
    Varuna Gupta
    International Journal of System Assurance Engineering and Management, 2023, 14 : 1567 - 1585
  • [8] A Machine-Learning Approach to Keypoint Detection and Landmarking on 3D Meshes
    Creusot, Clement
    Pears, Nick
    Austin, Jim
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 102 (1-3) : 146 - 179
  • [9] A Machine-Learning Approach to Identify the Influence of Temperature on FRA Measurements
    Ferreira, Regelii Suassuna de Andrade
    Picher, Patrick
    Ezzaidi, Hassan
    Fofana, Issouf
    ENERGIES, 2021, 14 (18)
  • [10] Analysis and prediction of Indian stock market: a machine-learning approach
    Srivastava, Shilpa
    Pant, Millie
    Gupta, Varuna
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (04) : 1567 - 1585