On the arithmetic sum of regular Cantor sets

被引:10
作者
Palis, J [1 ]
Yoccoz, JC [1 ]
机构
[1] UNIV PARIS 11,DEPT MATH,ORSAY,FRANCE
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1997年 / 14卷 / 04期
关键词
D O I
10.1016/S0294-1449(97)80135-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove here that for any pair of regular Canter sets in the line, either its arithmetic sum has Lebesgue measure zero or the pair can be approximated (through the image of a smooth diffeomorphism) by another one whose arithmetic sum contains an interval. The latter occurs when the Hausdorff dimension of the product of the sets is bigger than one.
引用
收藏
页码:439 / 456
页数:18
相关论文
共 5 条
[1]  
Falconer K. J., 1985, The geometry of fractal sets
[2]   HOMOCLINIC TANGENCIES FOR HYPERBOLIC SETS OF LARGE HAUSDORFF DIMENSION [J].
PALIS, J ;
YOCCOZ, JC .
ACTA MATHEMATICA, 1994, 172 (01) :91-136
[3]   CYCLES AND MEASURE OF BIFURCATION SETS FOR TWO-DIMENSIONAL DIFFEOMORPHISMS [J].
PALIS, J ;
TAKENS, F .
INVENTIONES MATHEMATICAE, 1985, 82 (03) :397-422
[4]  
PALIS J, 1994, HYPERBOLICITY SENSIT
[5]  
PALIS J, 1987, CONT MATH, V58, P203, DOI DOI 10.1090/CONM/058.3/893866