Two-Dimensional Metallic Photonic Crystal with Point Defect Analysis Using Modified Finite-Difference Frequency-Domain Method

被引:9
|
作者
Li, Y. L. [1 ]
Xue, Q. Z. [1 ]
Du, C. H. [1 ]
机构
[1] Chinese Acad Sci, Inst Elect, Key Lab High Power Microwave Sources & Technol, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect; finite-difference frequency-domain; photonic crystal; supercell; BAND-GAPS; TRANSMISSION; PROPAGATION;
D O I
10.1109/JLT.2009.2034871
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have derived a modified finite-difference frequency-domain (FDFD) algorithm for two-dimensional (2-D) metallic photonic crystal (MPC) analysis. Using this method, the numerical results for the transverse-electric (TE) and transverse-magnetic (TM) modes in square and triangular lattices are in excellent agreements with those from other method. Then the correspondence of the band gaps between a unit cell and a supercell is demonstrated. Furthermore, by comparing the field distributions of the defect modes in a point defected MPC and a point defected dielectric photonic crystal (DPC), it is found that the defect MPC has a higher degree of localization, which means that MPC is preponderant for resonator and waveguide applications in millimeter wave and sub-millimeter wave bands.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 50 条
  • [1] Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis
    Li Yan-Lin
    Xue Qian-Zhong
    Du Chao-Hai
    Hao Bao-Liang
    ACTA PHYSICA SINICA, 2010, 59 (04) : 2556 - 2563
  • [2] Light diffraction in photonic hypercrystals studied by finite-difference frequency-domain method
    Novikov, Vladimir B.
    Murzina, Tatiana, V
    METAMATERIALS XII, 2020, 11344
  • [3] Modeling of Nanophotonic Resonators With the Finite-Difference Frequency-Domain Method
    Ivinskaya, Aliaksandra M.
    Lavrinenko, Andrei V.
    Shyroki, Dzmitry M.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (11) : 4155 - 4161
  • [4] Multiscale finite-difference method for frequency-domain acoustic wave modeling
    Jiang, Wei
    Chen, Xuehua
    Jiang, Shuaishuai
    Zhang, Jie
    GEOPHYSICS, 2021, 86 (04) : T193 - T210
  • [5] Elastic frequency-domain finite-difference contrast source inversion method
    He, Qinglong
    Chen, Yong
    Han, Bo
    Li, Yang
    INVERSE PROBLEMS, 2016, 32 (03)
  • [6] Eigenvalue Analysis of Curved Waveguides Employing an Orthogonal Curvilinear Frequency-Domain Finite-Difference Method
    Lavranos, Christos S.
    Kyriacou, George A.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (03) : 594 - 611
  • [7] An accurate and efficient multiscale finite-difference frequency-domain method for the scalar Helmholtz equation
    Jiang, Wei
    Chen, Xuehua
    Lv, Bingnan
    Jiang, Shuaishuai
    GEOPHYSICS, 2022, 87 (01) : T43 - T60
  • [8] An improved 25-point finite-difference scheme for frequency-domain elastic wave modelling
    Li, Shizhong
    Sun, Chengyu
    GEOPHYSICAL PROSPECTING, 2022, 70 (04) : 702 - 724
  • [9] Modified Finite-Difference Time-Domain Method for Triangular Lattice Photonic Crystals
    Umenyi, Amarachukwu Valentine
    Miura, Kenta
    Hanaizumi, Osamu
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (22) : 4995 - 5001
  • [10] Effective Analysis of Ridged Circular Waveguides with a Curvilinear Frequency-Domain Finite-Difference Approach
    Fanti, A.
    Montisci, G.
    Mazzarella, G.
    Casula, G. A.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2013, 28 (11): : 1100 - 1110