Strength and Hardness of 3D Printed Poly Lactic Acid and Carbon Fiber Poly Lactic Acid Thermoplastics

被引:4
|
作者
Reddy, J. Durga Prasad [1 ]
Mishra, Debashis [1 ]
Chetty, Nagaraj [1 ]
机构
[1] CMR Tech Campus, Hyderabad, Telangana, India
来源
ADVANCES IN LIGHTWEIGHT MATERIALS AND STRUCTURES, ACALMS 2020 | 2020年 / 8卷
关键词
Carbon fiber poly lactic acid (CF-PLA); Fused deposition modeling (3D printing); Flexural strength; Hardness value; Tensile strength; MECHANICAL-PROPERTIES; COMPOSITES; TECHNOLOGY; PARAMETERS;
D O I
10.1007/978-981-15-7827-4_64
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The two different thermoplastic materials such as poly lactic acid (PLA) and carbon fiber poly lactic acid (CF-PLA) are selected for printed specimen preparation by the fused deposition modeling (FDM) technique. The FDM technique is also named as 3D printing technique. The experimental investigation is made to get the said materials specimen tensile and flexural strength and hardness properties to make a comparison between the two chosen printing materials with respect to the change in working limits of process parameters. The literature and trial experiments are performed to propose various and most effective process parameters of 3D printing technique like fill density (60, 80 and 100%), print speed (0.06, 0.08 and 0.1 m/s) and layer thickness (0.1, 0.2 and 0.3 microns). The influence of these process parameters is understood by analyzing the obtained testing results. The fill density and print speed are most accountable for getting maximum hardness, flexural and tensile strength of 3D printed PLA and carbon fiber material specimen. The most suitable material among CF-PLA, and PLA can be assessed and the working range of 3D printing process parameters can be assumed through this experimental investigation.
引用
收藏
页码:625 / 634
页数:10
相关论文
共 50 条
  • [31] Poly(lactic acid) modifications
    Rasal, Rahul M.
    Janorkar, Amol V.
    Hirt, Douglas E.
    PROGRESS IN POLYMER SCIENCE, 2010, 35 (03) : 338 - 356
  • [32] Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites
    Zhang, Li
    Zhen, Weijun
    Zhou, Yufang
    JOURNAL OF POLYMER ENGINEERING, 2017, 37 (09) : 897 - 909
  • [33] An observation of the evolution of equilibrium stress on poly(lactic acid) and poly(lactic acid)/hydroxyapatite nanocomposites
    Dusunceli, Necmi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (06) : 1026 - 1044
  • [34] Effectiveness of the preparation of maleic anhydride grafted poly (lactic acid) by reactive processing for poly (lactic acid)/carbon nanotubes nanocomposites
    Verginio, Gleice Ellen Almeida
    Montanheiro, Thais Larissa do Amaral
    Montagna, Larissa Stieven
    Marini, Juliano
    Passador, Fabio Roberto
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (12)
  • [35] Synthesis and Characterization of Stereo Multiblock Poly(lactic acid)s with Different Block Lengths by Melt Polycondensation of Poly(L-lactic acid)/Poly(D-lactic acid) Blends
    Rahaman, Md Hafezur
    Tsuji, Hideto
    MACROMOLECULAR REACTION ENGINEERING, 2012, 6 (11) : 446 - 457
  • [36] Altering the Elastic Properties of 3D Printed Poly-Lactic Acid (PLA) Parts by Compressive Cyclic Loading
    Pepelnjak, Tomaz
    Karimi, Ako
    Macek, Andraz
    Mole, Nikolaj
    MATERIALS, 2020, 13 (19) : 1 - 18
  • [37] Sustainable 3D printed poly (lactic acid) (PLA)/Hazelnut shell powder bio composites for design applications
    Aliotta, Laura
    Sergi, Claudia
    Dal Pont, Bianca
    Coltelli, Maria -Beatrice
    Gigante, Vito
    Lazzeri, Andrea
    MATERIALS TODAY SUSTAINABILITY, 2024, 26
  • [38] Properties of poly (lactic Acid)/hydroxyapatite biocomposites for 3D printing feedstock material
    Begum, Sabana Ara
    Krishnan, P. Santhana Gopala
    Kanny, Krishnan
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2024, 37 (02) : 644 - 668
  • [39] The Study on the Mechanical Properties of Poly(lactic acid)/Straw Fiber Composites
    Zhang, Ping
    Wang, Bingtao
    Gao, De
    Wen, Lihua
    PACKAGING SCIENCE AND TECHNOLOGY, 2012, 200 : 312 - 315
  • [40] Favorable Thermoresponsive Shape Memory Effects of 3D Printed Poly(Lactic Acid)/Poly(ε-Caprolactone) Blends Fabricated by Fused Deposition Modeling
    Liu, Hao
    He, Hui
    Huang, Bai
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (11)