Eigenvalue and "twisted" eigenvalue problems, applications to CMC surfaces

被引:37
作者
Barbosa, L
Bérard, P
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Grenoble 1, Inst Fourier, CNRS, UMR 5582, F-38402 St Martin Dheres, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2000年 / 79卷 / 05期
关键词
eigenvalue problem; Morse index; constant mean curvature immersion;
D O I
10.1016/S0021-7824(00)00160-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate an eigenvalue problem which appears naturally when one considers the second variation of a constant mean curvature immersion. In this geometric context, the second variation operator is of the form Delta g + b, where b is a real valued function, and it is viewed as acting on smooth functions with compact support and with mean value zero. The condition on the mean value comes from the fact that the variations under consideration preserve some balance of volume. This kind of eigenvalue problem is interesting in itself. In the case of a compact manifold, possibly with boundary, we compare the eigenvalues of this problem with the eigenvalues of the usual (Dirichlet) problem and we in particular show that the two spectra are interwined (in fact strictly interwined generically). As a by-product of our investigation of the case of a complete manifold with infinite volume we prove, under mild geometric conditions when the dimension is at least 3, that the strong and weak Morse indexes of a constant mean curvature hypersurface coincide. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:427 / 450
页数:24
相关论文
共 17 条
[1]   GENERIC PROPERTIES OF THE EIGENVALUE OF THE LAPLACIAN FOR COMPACT RIEMANNIAN-MANIFOLDS [J].
BANDO, S ;
URAKAWA, H .
TOHOKU MATHEMATICAL JOURNAL, 1983, 35 (02) :155-172
[2]  
BARBOSA L, 1988, MATH Z, V197, P123
[3]   General curvature estimates for stable H-surfaces immersed into a space form [J].
Bérard, P ;
Hauswirth, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (07) :667-700
[4]   Complete hypersurfaces with constant mean curvature and finite total curvature [J].
Berard, P ;
Do Carmo, M ;
Santos, W .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (03) :273-290
[5]   The index of constant mean curvature surfaces in hyperbolic 3-space [J].
Berard, P ;
doCarmo, M ;
Santos, W .
MATHEMATISCHE ZEITSCHRIFT, 1997, 224 (02) :313-326
[6]  
Berard P., 1986, MONOGRAFIAS MATEMATI, V42
[7]   Spectral properties of constant mean curvature submanifolds in hyperbolic space [J].
Castillon, P .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (06) :563-580
[8]  
COLBRIE DF, 1987, INVENT MATH, V82, P121
[9]   STABILITY OF COMPLETE NONCOMPACT SURFACES WITH CONSTANT MEAN-CURVATURE [J].
DASILVEIRA, AM .
MATHEMATISCHE ANNALEN, 1987, 277 (04) :629-638
[10]  
Frensel K. R., 1996, BOL SOC BRAS MAT, V27, P129