2D photochemical model for forbidden oxygen line emission for comet 1P/Halley

被引:1
|
作者
Cessateur, G. [1 ]
De Keyser, J. [1 ]
Maggiolo, R. [1 ]
Rubin, M. [2 ]
Gronoff, G. [3 ,4 ]
Gibbons, A. [1 ,5 ]
Jehin, E. [6 ]
Dhooghe, F. [1 ]
Gunell, H. [1 ]
Vaeck, N. [5 ]
Loreau, J. [5 ]
机构
[1] Royal Belgian Inst Space Aeron, Space Phys Div, Ringlaan 3, B-1180 Brussels, Belgium
[2] Univ Bern, Phys Inst, Sidlerstr 5, CH-3012 Bern, Switzerland
[3] NASA, Langley Res Ctr, Chem & Dynam Branch, Sci Directorate, Hampton, VA 23681 USA
[4] SSAI, Hampton, VA 23681 USA
[5] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Av FD Roosevelt 50, B-1050 Brussels, Belgium
[6] Univ Liege, Inst Astrophys Geophys & Oceanog, Allee 6 Aout 17, B-4000 Liege, Belgium
基金
瑞士国家科学基金会;
关键词
molecular processes; methods: numerical; comets: general; PLANETARY SPACE WEATHER; MOLECULAR-OXYGEN; ROSETTA; 67P/CHURYUMOV-GERASIMENKO; MISSION; ROSINA; HALLEY; SYSTEM; GAS; ION;
D O I
10.1093/mnras/stw2150
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present here a 2D model of photochemistry for computing the production and loss mechanisms of the O(S-1) and O(D-1) states, which are responsible for the emission lines at 577.7, 630, and 636.4 nm, in case of the comet 1P/Halley. The presence of O-2 within cometary atmospheres, measured by the in situ Rosetta and Giotto missions, necessitates a revision of the usual photochemical models. Indeed, the photodissociation of molecular oxygen also leads to a significant production of oxygen in excited electronic states. In order to correctly model the solar ultraviolet (UV) flux absorption, we consider here a 2D configuration. While the green to red-doublet ratio is not affected by the solar UV flux absorption, estimates of the red-doublet and green lines emissions are, however, overestimated by a factor of 2 in the 1D model compared to the 2D model. Considering a spherical symmetry, emission maps can be deduced from the 2D model in order to be directly compared to ground and/or in situ observations.
引用
收藏
页码:S116 / S123
页数:8
相关论文
共 33 条
  • [1] MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY
    Rubin, M.
    Altwegg, K.
    Van Dishoeck, E. F.
    Schwehm, G.
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 815 (01)
  • [2] Model for the production of CO Cameron band emission in Comet 1P/Halley
    Raghuram, Susarla
    Bhardwaj, Anil
    PLANETARY AND SPACE SCIENCE, 2012, 63-64 : 139 - 149
  • [3] Multi-fluid model of comet 1P/Halley
    Benna, Mehdi
    Mahaffy, Paul
    PLANETARY AND SPACE SCIENCE, 2007, 55 (09) : 1031 - 1043
  • [4] Identification of anthracene in Comet 1P/Halley
    Clairemidi, J.
    Moreels, G.
    Mousis, O.
    Brechignac, P.
    ASTRONOMY & ASTROPHYSICS, 2008, 492 (01): : 245 - 250
  • [5] COMET 1P/HALLEY MULTIFLUID MHD MODEL FOR THE GIOTTO FLY-BY
    Rubin, M.
    Combi, M. R.
    Daldorff, L. K. S.
    Gombosi, T. I.
    Hansen, K. C.
    Shou, Y.
    Tenishev, V. M.
    Toth, G.
    van der Holst, B.
    Altwegg, K.
    ASTROPHYSICAL JOURNAL, 2014, 781 (02)
  • [6] On the dynamics of Comet 1P/Halley: Lyapunov and power spectra
    Perez-Hernandez, Jorge A.
    Benet, Luis
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (01) : 296 - 303
  • [7] The origin of chaos in the orbit of comet 1P/Halley
    Boekholt, T. C. N.
    Pelupessy, F. I.
    Heggie, D. C.
    Zwart, S. F. Portegies
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) : 3576 - 3584
  • [8] Negative ion chemistry in the coma of comet 1P/Halley
    Cordiner, M. A.
    Charnley, S. B.
    METEORITICS & PLANETARY SCIENCE, 2014, 49 (01) : 21 - 27
  • [9] COMET 1P/HALLEY IN 1910: TALES FROM INDIA
    Kapoor, R. C.
    JOURNAL OF ASTRONOMICAL HISTORY AND HERITAGE, 2023, 26 (02): : 411 - 440
  • [10] Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy
    Munoz-Gutierrez, M. A.
    Reyes-Ruiz, M.
    Pichardo, B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 447 (04) : 3775 - 3784