Scan Pattern Characterization of Velodyne VLP-16 Lidar Sensor for UAS Laser Scanning

被引:10
作者
Lassiter, H. Andrew [1 ,2 ]
Whitley, Travis [3 ]
Wilkinson, Benjamin [1 ,2 ]
Abd-Elrahman, Amr [1 ,2 ]
机构
[1] Univ Florida, Sch Forest Resources & Conservat, Geomat Program, Gainesville, FL 32611 USA
[2] Univ Florida, Sch Forest Resources & Conservat, Geospatial Modeling & Applicat Lab, Gainesville, FL 32611 USA
[3] Altavian Inc, Gainesville, FL 32601 USA
基金
美国海洋和大气管理局; 美国食品与农业研究所;
关键词
UAS; drones; lidar; flight planning; Velodyne; CALIBRATION;
D O I
10.3390/s20247351
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Many lightweight lidar sensors employed for UAS lidar mapping feature a fan-style laser emitter-detector configuration which results in a non-uniform pattern of laser pulse returns. As the role of UAS lidar mapping grows in both research and industry, it is imperative to understand the behavior of the fan-style lidar sensor to ensure proper mission planning. This study introduces sensor modeling software for scanning simulation and analytical equations developed in-house to characterize the non-uniform return density (i.e., scan pattern) of the fan-style sensor, with special focus given to a popular fan-style sensor, the Velodyne VLP-16 laser scanner. The results indicate that, despite the high pulse frequency of modern scanners, areas of poor laser pulse coverage are often present along the scanning path under typical mission parameters. These areas of poor coverage appear in a variety of shapes and sizes which do not necessarily correspond to the forward speed of the scanner or the height of the scanner above the ground, highlighting the importance of scan simulation for proper mission planning when using a fan-style sensor.
引用
收藏
页码:1 / 21
页数:19
相关论文
共 19 条
  • [1] Flight Planning for LiDAR-Based UAS Mapping Applications
    Alsadik, Bashar
    Remondino, Fabio
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (06)
  • [2] Airborne laser scanning: basic relations and formulas
    Baltsavias, EP
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (2-3) : 199 - 214
  • [3] Measuring Individual Tree Diameter and Height Using GatorEye High-Density UAV-Lidar in an Integrated Crop-Livestock-Forest System
    Dalla Corte, Ana Paula
    Rex, Franciel Eduardo
    Alves de Almeida, Danilo Roberti
    Sanquetta, Carlos Roberto
    Silva, Carlos A.
    Moura, Marks M.
    Wilkinson, Ben
    Almeyda Zambrano, Angelica Maria
    da Cunha Neto, Ernandes M.
    Veras, Hudson F. P.
    de Moraes, Anibal
    Klauberg, Carine
    Mohan, Midhun
    Cardil, Adrian
    Broadbent, Eben North
    [J]. REMOTE SENSING, 2020, 12 (05)
  • [4] El-Sheimy N, 2018, TOPOGRAPHIC LASER RANGING AND SCANNING: PRINCIPLES AND PROCESSING, 2ND EDITION, P221
  • [5] Geodetics Inc, DRON FLIGHT PLANN GE
  • [6] CALIBRATION AND STABILITY ANALYSIS OF THE VLP-16 LASER SCANNER
    Glennie, C. L.
    Kusari, A.
    Facchin, A.
    [J]. EUROCOW 2016, THE EUROPEAN CALIBRATION AND ORIENTATION WORKSHOP, 2016, 40-3 (W4): : 55 - 59
  • [7] Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning
    Glennie, Craig
    Lichti, Derek D.
    [J]. REMOTE SENSING, 2010, 2 (06): : 1610 - 1624
  • [8] Unmanned Aircraft System (UAS) Technology and Applications in Agriculture
    Hassler, Samuel C.
    Baysal-Gurel, Fulya
    [J]. AGRONOMY-BASEL, 2019, 9 (10):
  • [9] Ippolito C, 2016, IEEE SENSOR
  • [10] PERFORMANCE EVALUATION OF sUAS EQUIPPED WITH VELODYNE HDL-32E LiDAR SENSOR
    Jozkow, G.
    Wieczorek, P.
    Karpina, M.
    Walicka, A.
    Borkowski, A.
    [J]. INTERNATIONAL CONFERENCE ON UNMANNED AERIAL VEHICLES IN GEOMATICS (VOLUME XLII-2/W6), 2017, 42-2 (W6): : 171 - 177