A panel of biomarkers in the prediction for early allograft dysfunction and mortality after living donor liver transplantation

被引:2
|
作者
Tsai, Hsin-, I [1 ,2 ]
Lo, Chi-Jen [3 ]
Lee, Chao-Wei [2 ,4 ]
Lin, Jr-Rung [5 ,6 ]
Lee, Wei-Chen [4 ,7 ]
Ho, Hung-Yao [3 ,8 ,10 ]
Tsai, Chia-Yi [1 ]
Cheng, Mei-Ling [3 ,9 ,10 ]
Yu, Huang-Ping [1 ,2 ]
机构
[1] Chang Gung Mem Hosp, Dept Anesthesiol, 5 Fu Shin St, Taoyuan 333, Taiwan
[2] Chang Gung Univ, Coll Med, Taoyuan 333, Taiwan
[3] Chang Gung Univ, Hlth Aging Res Ctr, Metabol Core Lab, Taoyuan 333, Taiwan
[4] Chang Gung Mem Hosp, Dept Gen Surg, Taoyuan 333, Taiwan
[5] Chang Gung Univ, Clin Informat & Med Stat Res Ctr, Taoyuan 333, Taiwan
[6] Chang Gung Univ, Grad Inst Clin Med, Taoyuan 333, Taiwan
[7] Chang Gung Univ, Chang Gung Mem Hosp, Dept Liver & Transplantat Surg, Coll Med, Taoyuan 333, Taiwan
[8] Chang Gung Univ, Dept Biomed Sci, Taoyuan 333, Taiwan
[9] Chang Gung Univ, Coll Med, Dept Med Biotechnol & Lab Sci, Taoyuan, Taiwan
[10] Chang Gung Mem Hosp Linkou, Clin Metabol Core Lab, Taoyuan 333, Taiwan
来源
AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH | 2021年 / 13卷 / 01期
关键词
Lipidomics; early allograft dysfunction; phosphatidylcholines; lysophosphatidylcholines; betaine; living donor liver transplantation; FATTY LIVER; DEFINITION; BETAINE; RECIPIENTS; OUTCOMES;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Early allograft dysfunction (EAD) is associated with graft failure and mortality after living donor liver transplantation (LDLT). In this study, we report biomarkers superior to other conventional clinical markers in the prediction of EAD and all-cause in-hospital mortality in LDLT patient cohort. Blood samples of living donor liver transplant recipients were collected on postoperative day 1 and analyzed by liquid chromatography coupled with mass spectrometry (LC-MS). Significant metabolites associated with the prediction of EAD were identified using orthogonal projection to latent structures-discriminant analysis (OPLS-DA). A few lipids, more specifically, lysoPC (16:0), PC (18:0/20:5), betaine and palmitic acid (C16:0) were found to effectively differentiate EAD from non-EAD on postoperative day 1. A combination of these four metabolites showed an AUC of 0.821, which was further improved to 0.846 by the addition of a clinical parameter, total bilirubin. The panel exhibits a high prognostic accuracy in prediction of all-cause in-hospital mortality and mortality within 7 postoperative days with AUCs of 0.843 and 0.954. These results show the combination of metabolomics-derived biomarkers and clinical parameters demonstrates the power of panels in diagnostic and prognostic evaluation of LDLT.
引用
收藏
页码:372 / 382
页数:11
相关论文
共 50 条
  • [21] Biomarkers and predictive models of early allograft dysfunction in liver transplantation - A systematic review of the literature, meta-analysis, and expert panel recommendations
    Liu, Jiang
    Martins, Paulo N.
    Bhat, Mamatha
    Pang, Li
    Yeung, Oscar W. H.
    Ng, Kevin T. P.
    Spiro, Michael
    Raptis, Dimitri Aristotle
    Man, Kwan
    Mas, Valeria R.
    Niemann, Claus
    Pollok, Joerg-Matthias
    Berenguer, Marina
    Tinguely, Pascale
    CLINICAL TRANSPLANTATION, 2022, 36 (10)
  • [22] Early Allograft Dysfunction Is Associated With Excess Resource Utilization After Liver Transplantation
    Croome, K. P.
    Hernandez-Alejandro, R.
    Chandok, N.
    TRANSPLANTATION PROCEEDINGS, 2013, 45 (01) : 259 - 264
  • [23] Effects of Therapeutic Plasma Exchange on Early Allograft Dysfunction After Liver Transplantation
    Choe, Wonho
    Kwon, Seog-Woon
    Kim, Sung-Soo
    Hwang, Shin
    Song, Gi-Won
    Lee, Sung-Gyu
    JOURNAL OF CLINICAL APHERESIS, 2017, 32 (03) : 147 - 153
  • [24] Acute Liver Allograft Rejection After Living Donor Liver Transplantation: Risk Factors and Patient Survival
    Wei, Qiang
    Wang, Kun
    He, Zenglei
    Ke, Qinghong
    Xu, Xiao
    Zheng, Shusen
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2018, 356 (01) : 23 - 29
  • [25] Allograft tolerance after adult living donor liver transplantation: a case-control study
    Habl, Mohamed S.
    Emara, Moataz Maher
    Zayed, Reham A.
    Sultan, Ahmed M.
    Elsabagh, Ahmed
    Elsaid, Ahmed Marwan
    Abdel-khalek, Ehab E.
    El-Saadany, Mohamed M.
    Wahab, Mohamed Abdel
    Shehta, Ahmed
    BMC SURGERY, 2025, 25 (01)
  • [26] Renal Dysfunction After Liver Transplantation: Effect of Donor Type
    Kollmann, Dagmar
    Neong, Shuet Fong
    Rosales, Roizar
    Hansen, Bettina E.
    Sapisochin, Gonzalo
    McCluskey, Stuart
    Bhat, Mamatha
    Cattral, Mark S.
    Lilly, Les
    McGilvray, Ian D.
    Ghanekar, Anand
    Grant, David R.
    Selzner, Markus
    Wong, Florence S. H.
    Selzner, Nazia
    LIVER TRANSPLANTATION, 2020, 26 (06) : 799 - 810
  • [27] Early allograft dysfunction after liver transplantation: an intermediate outcome measure for targeted improvements
    Lee, David D.
    Croome, Kristopher P.
    Shalev, Jefree A.
    Musto, Kaitlyn R.
    Sharma, Meenu
    Keaveny, Andrew P.
    Taner, C. Burcin
    ANNALS OF HEPATOLOGY, 2016, 15 (01) : 53 - 60
  • [28] Is Muscle MELD a More Promising Predictor for Mortality After Living Donor Liver Transplantation?
    Badawy, Amr
    Kaido, Toshimi
    Hamaguchi, Yuhei
    Anazawa, Takayuki
    Yagi, Shintaro
    Fukumitsu, Ken
    Kamo, Naoko
    Okajima, Hideaki
    Uemoto, Shinji
    PROGRESS IN TRANSPLANTATION, 2018, 28 (03) : 213 - 219
  • [29] Impact of donor age on recipient morbidity and mortality after living donor liver transplantation
    Yeow, Marcus
    Qi, Pang Ning
    Muthiah, Mark D.
    Soon, Gwyneth
    Yock-Young, Dan
    Bonney, Glenn Kunnath
    Iyer, Shridhar Ganpathi
    Madhavan, Krishnakumar
    Kow, Wei Chieh Alfred
    ANZ JOURNAL OF SURGERY, 2022, 92 (7-8) : 1867 - 1872
  • [30] Evaluation of Factors Influencing Renal Dysfunction Following Living Donor Liver Transplantation
    Sunny, Liniya
    James, Emmanuel
    Krishnapriya, M.
    Mamatha, M. R.
    Sudhindran, S.
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2016, 78 (05) : 566 - 574