Variational Wasserstein Clustering

被引:13
作者
Mi, Liang [1 ]
Zhang, Wen [1 ]
Gu, Xianfeng [2 ]
Wang, Yalin [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
[2] SUNY Stony Brook, Stony Brook, NY 11794 USA
来源
COMPUTER VISION - ECCV 2018, PT 15 | 2018年 / 11219卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Clustering; Discrete distribution; K-means; Measure preserving; Optimal transportation; Wasserstein distance; EARTH-MOVERS-DISTANCE; QUANTIZATION; ALGORITHMS;
D O I
10.1007/978-3-030-01267-0_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new clustering method based on optimal transportation. We discuss the connection between optimal transportation and k-means clustering, solve optimal transportation with the variational principle, and investigate the use of power diagrams as transportation plans for aggregating arbitrary domains into a fixed number of clusters. We drive cluster centroids through the target domain while maintaining the minimum clustering energy by adjusting the power diagram. Thus, we simultaneously pursue clustering and the Wasserstein distance between the centroids and the target domain, resulting in a measure-preserving mapping. We demonstrate the use of our method in domain adaptation, remeshing, and learning representations on synthetic and real data.
引用
收藏
页码:336 / 352
页数:17
相关论文
共 38 条
[1]   BARYCENTERS IN THE WASSERSTEIN SPACE [J].
Agueh, Martial ;
Carlier, Guillaume .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :904-924
[2]  
Alexandrov A. D., 2005, CONVEX POLYHEDRA
[3]  
[Anonymous], 2009, P 17 ACM SIGSPATIAL, DOI 10.1145/1653771.1653865
[4]  
[Anonymous], 2018, IEEE C COMP VIS PATT
[5]  
[Anonymous], 2015, P 28 INT C NEURAL IN
[6]  
[Anonymous], 2017, P 34 INT C MACHINE L
[7]  
Applegate D., 2011, P 17 ACM SIGKDD INT, P636, DOI DOI 10.1145/2020408.2020508
[8]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[9]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[10]   POWER DIAGRAMS - PROPERTIES, ALGORITHMS AND APPLICATIONS [J].
AURENHAMMER, F .
SIAM JOURNAL ON COMPUTING, 1987, 16 (01) :78-96