Matter-wave vortices and solitons in anisotropic optical lattices

被引:36
|
作者
Mayteevarunyoo, Thawatchai [1 ,2 ]
Malomed, Boris A. [1 ]
Baizakov, Bakhtiyor B. [3 ,4 ,5 ]
Salerno, Mario [4 ,5 ]
机构
[1] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[2] Mahanakorn Univ Technol, Dept Telecommun Engn, Bangkok 10530, Thailand
[3] Uzbek Acad Sci, Phys Tech Inst, Tashkent 700084, Uzbekistan
[4] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Italy
[5] Univ Salerno, Consorzio Nazl, Interuniv Sci Fis Mat CNISM, I-84081 Baronissi, Italy
基金
以色列科学基金会;
关键词
Bose-Einstein condensate; Photonic crystal; Collapse; Square vortex; Rhombus vortex; Quadrupole; Gap soliton; Dipole soliton; GAP SOLITONS; DISCRETE SOLITONS; VORTEX SOLITONS; EINSTEIN;
D O I
10.1016/j.physd.2008.07.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using numerical methods, we construct families of vortical, quadrupole, and fundamental solitons in a two-dimensional (2D) nonlinear-Schrodinger/Gross-Pitaevskii equation Which models Bose-Einstein condensates (BECs) or photonic crystals. The equation includes the attractive or repulsive cubic nonlinearity and an anisotropic periodic potential. Two types of anisotropy are considered, accounted for by the difference in the strengths of the I D sublattices, or by a difference in their periods. The limit case of the quasi-1D optical lattice (OL), when one sublattice is missing, is included too. By means of systematic simulations, we identify stability limits for two species of vortex solitons and quadrupoles, of the rhombus and square types. In the attraction model, rhombic vortices and quadrupoles remain stable up to the limit case of the quasi-1D lattice. In the same model, finite stability limits are found for vortices and quadrupoles of the Square type, in terms of the anisotropy parameter. In the repulsion model, rhombic vortices and quadrupoles are stable in large parts of the first finite bandgap (FBG). Another species of partly stable anisotropic states is found in the second FBG, subfundamental dipoles, each squeezed into a single cell of the OL. Square-shaped quadrupoles are completely unstable in the repulsion model, while vortices of the same type are stable only in weakly anisotropic OL potentials. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1439 / 1448
页数:10
相关论文
共 50 条
  • [1] Matter-wave gap vortices in optical lattices
    Ostrovskaya, EA
    Kivshar, YS
    PHYSICAL REVIEW LETTERS, 2004, 93 (16) : 160405 - 1
  • [2] Coupled matter-wave solitons in optical lattices
    Ali, Sk. Golam
    Talukdar, B.
    ANNALS OF PHYSICS, 2009, 324 (06) : 1194 - 1210
  • [3] Matter-wave solitons in nonlinear optical lattices
    Sakaguchi, H
    Malomed, BA
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [4] Stability of matter-wave solitons in optical lattices
    Sk. Golam Ali
    S. K. Roy
    B. Talukdar
    The European Physical Journal D, 2010, 59 : 269 - 277
  • [5] Matter-wave dark solitons in optical lattices
    Louis, PJY
    Ostrovskaya, EA
    Kivshar, YS
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (05) : S309 - S317
  • [6] Stability of matter-wave solitons in optical lattices
    Ali, Sk Golam
    Roy, S. K.
    Talukdar, B.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 269 - 277
  • [7] Interaction of matter-wave gap solitons in optical lattices
    Dabrowska-Wuster, BJ
    Ostrovskaya, EA
    Kivshar, YS
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (10) : 423 - 427
  • [8] Rabi oscillations of matter-wave solitons in optical lattices
    Bludov, Yu. V.
    Konotop, V. V.
    Salerno, M.
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [9] Transition radiation by matter-wave solitons in optical lattices
    Yulin, AV
    Skryabin, DV
    Russell, PSJ
    PHYSICAL REVIEW LETTERS, 2003, 91 (26)
  • [10] Three-dimensional matter-wave vortices in optical lattices
    Alexander, TJ
    Ostrovskaya, EA
    Sukhorukov, AA
    Kivshar, YS
    PHYSICAL REVIEW A, 2005, 72 (04):