Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments

被引:24
作者
Zong, Minggang [1 ]
Liang, Hongzhen
机构
[1] Jiangsu Univ, Fac Sci, Jiangsu 212013, Peoples R China
[2] Remmin Univ China, Sch Stat, Beijing 100872, Peoples R China
关键词
p-Laplacian; periodic solutions; Rayleigh equation; deviating argument; topological degree;
D O I
10.1016/j.aml.2006.02.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using topological degree theory and some analysis skill, we obtain some sufficient conditions for the existence of periodic solutions for Rayleigh type p-Laplacian differential equation with deviating arguments. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 7 条
[1]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[2]  
Huang X., 1994, CHINESE SCI BULL, V39, P201
[3]  
LI YK, 1998, J MATH RES EXPOSITIO, V18, P565
[4]   Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :501-514
[5]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[6]  
Wang G, 2000, INT J MATH MATH SCI, V23, P65
[7]   A priori bounds for periodic solutions of a delay Rayleigh equation [J].
Wang, GQ ;
Cheng, SS .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :41-44