Rearrangements and Leibniz-type rules of mean oscillations

被引:0
|
作者
Leka, Zoltan [1 ]
机构
[1] Royal Holloway Univ London, Egham Hill, Egham TW20 0EX, Surrey, England
基金
匈牙利科学研究基金会;
关键词
Leibniz inequality; Leibniz seminorm; Rearrangements; Banach function spaces; SEMINORMS;
D O I
10.1016/j.jmaa.2018.05.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall prove a rearrangement inequality in probability measure spaces in order to obtain sharp Leibniz-type rules of mean oscillations in L-P-spaces and rearrangement invariant Banach function spaces. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:961 / 972
页数:12
相关论文
共 50 条
  • [31] Vanishing mean oscillation and continuity of rearrangements
    Burchard, Almut
    Dafni, Galia
    Gibara, Ryan
    ADVANCES IN MATHEMATICS, 2024, 437
  • [32] Leibniz algebras of Heisenberg type
    Calderon, A. J.
    Camacho, L. M.
    Omirov, B. A.
    JOURNAL OF ALGEBRA, 2016, 452 : 427 - 447
  • [33] Oscillations of global mean TEC
    Hocke, Klemens
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A4)
  • [34] Mean oscillations of the logarithmic function
    Didenko, Victor D.
    Korenovskyi, Anatolii A.
    Tuah, Nor Jaidi
    RICERCHE DI MATEMATICA, 2013, 62 (01) : 81 - 90
  • [35] Leibniz rules for fractional derivatives of non-differentiable functions
    Kostic, Marko
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [36] Leibniz and the questions of legal ontology: the science, the rules and the concept of law
    Paksy, Mate
    ASTERION-PHILOSOPHIE HISTOIRE DES IDEES PENSEE POLITIQUE, 2018, (19):
  • [37] SKELETON REARRANGEMENTS OF SKELETON COMPOUNDS WITH MEAN CYCLES
    LERMAN, BM
    USPEKHI KHIMII, 1991, 60 (04) : 736 - 763
  • [38] Monotonic rearrangements of functions with small mean oscillation
    Stolyarov, Dmitriy M.
    Vasyunin, Vasily I.
    Zatitskiy, Pavel B.
    STUDIA MATHEMATICA, 2015, 231 (03) : 257 - 267
  • [39] SUM-RULES IN NEUTRINO OSCILLATIONS
    KOBZAREV, IY
    MARTEMYANOV, BV
    OKUN, LB
    SHCHEPKIN, MG
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1982, 35 (05): : 708 - 712
  • [40] Leibniz rules and Gauss-Green formulas in distributional fractional spaces
    Comi, Giovanni E.
    Stefani, Giorgio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)