Rearrangements and Leibniz-type rules of mean oscillations

被引:0
|
作者
Leka, Zoltan [1 ]
机构
[1] Royal Holloway Univ London, Egham Hill, Egham TW20 0EX, Surrey, England
基金
匈牙利科学研究基金会;
关键词
Leibniz inequality; Leibniz seminorm; Rearrangements; Banach function spaces; SEMINORMS;
D O I
10.1016/j.jmaa.2018.05.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall prove a rearrangement inequality in probability measure spaces in order to obtain sharp Leibniz-type rules of mean oscillations in L-P-spaces and rearrangement invariant Banach function spaces. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:961 / 972
页数:12
相关论文
共 50 条
  • [21] Admissible Rules and the Leibniz Hierarchy
    Raftery, James G.
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2016, 57 (04) : 569 - 606
  • [22] Leibniz rules and reality conditions
    Fiore, G
    Madore, J
    EUROPEAN PHYSICAL JOURNAL C, 2000, 17 (02): : 359 - 366
  • [23] Variable-order fractional derivative under Hadamard's finite-part integral: Leibniz-type rule and its applications
    Zhang, Zhi-Yong
    Lin, Zhi-Xiang
    Guo, Lei-Lei
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1641 - 1653
  • [24] RULES FOR CARBOCATION REARRANGEMENTS
    KOPTYUG, VA
    SHUBIN, VG
    ZHURNAL ORGANICHESKOI KHIMII, 1980, 16 (09): : 1977 - 2008
  • [25] Leibniz rules for multivariate divided differences
    Carnicer, Jesus
    Sauer, Tomas
    JOURNAL OF APPROXIMATION THEORY, 2014, 181 : 43 - 53
  • [26] Commutativity of the Leibniz rules in fractional calculus
    Tu, ST
    Wu, TC
    Srivastava, HM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (2-3) : 303 - 312
  • [27] MEAN OSCILLATION BOUNDS ON REARRANGEMENTS
    Burchard, Almut
    Dafni, Galia
    Gibara, Ryan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 1 - 16
  • [28] Weighted bi-parameter fractional Leibniz rules
    Hale, Elizabeth
    Naibo, Virginia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)
  • [29] The fractional Leibniz rules on the product space of Carnot groups
    Fang, Jingxuan
    Li, Hongbo
    Zhao, Jiman
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2025, 19 (02)
  • [30] What does 'perspectivity' mean? A discussion with a view on Leibniz
    Kraemer, Sybille
    ALLGEMEINE ZEITSCHRIFT FUR PHILOSOPHIE, 2019, 44 (03): : 325 - 343