Rearrangements and Leibniz-type rules of mean oscillations

被引:0
|
作者
Leka, Zoltan [1 ]
机构
[1] Royal Holloway Univ London, Egham Hill, Egham TW20 0EX, Surrey, England
基金
匈牙利科学研究基金会;
关键词
Leibniz inequality; Leibniz seminorm; Rearrangements; Banach function spaces; SEMINORMS;
D O I
10.1016/j.jmaa.2018.05.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall prove a rearrangement inequality in probability measure spaces in order to obtain sharp Leibniz-type rules of mean oscillations in L-P-spaces and rearrangement invariant Banach function spaces. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:961 / 972
页数:12
相关论文
共 50 条
  • [1] Fractional Leibniz-type Rules on Spaces of Homogeneous Type
    Liguang Liu
    Yuying Zhang
    Potential Analysis, 2024, 60 : 555 - 595
  • [2] Fractional Leibniz-type Rules on Spaces of Homogeneous Type
    Liu, Liguang
    Zhang, Yuying
    POTENTIAL ANALYSIS, 2024, 60 (02) : 555 - 595
  • [3] Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules
    Frédéric Bernicot
    Diego Maldonado
    Kabe Moen
    Virginia Naibo
    The Journal of Geometric Analysis, 2014, 24 : 1144 - 1180
  • [4] Weighted Leibniz-type rules for bilinear flag multipliers
    Yang, Jiexing
    Liu, Zongguang
    Wu, Xinfeng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
  • [5] Weighted Leibniz-type rules for bilinear flag multipliers
    Jiexing Yang
    Zongguang Liu
    Xinfeng Wu
    Banach Journal of Mathematical Analysis, 2021, 15
  • [6] Weighted Fractional Leibniz-Type Rules for Bilinear Multiplier Operators
    Joshua Brummer
    Virginia Naibo
    Potential Analysis, 2019, 51 : 71 - 99
  • [7] Weighted Fractional Leibniz-Type Rules for Bilinear Multiplier Operators
    Brummer, Joshua
    Naibo, Virginia
    POTENTIAL ANALYSIS, 2019, 51 (01) : 71 - 99
  • [8] Bilinear Sobolev-Poincare, Inequalities and Leibniz-Type Rules
    Bernicot, Frederic
    Maldonado, Diego
    Moen, Kabe
    Naibo, Virginia
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) : 1144 - 1180
  • [9] Leibniz-Type Rules for Bilinear and Biparameter Fourier Multiplier Operators with Applications
    Yang, Jiexing
    Liu, Zongguang
    Wu, Xinfeng
    POTENTIAL ANALYSIS, 2021, 55 (02) : 189 - 209
  • [10] Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity
    Zongguang Liu
    Xinfeng Wu
    Jiexing Yang
    Results in Mathematics, 2022, 77