VERTEX REPRESENTATIONS FOR YANGIANS OF KAC-MOODY ALGEBRAS

被引:7
作者
Guay, Nicolas [1 ]
Regelskis, Vidas [2 ,3 ]
Wendlandt, Curtis [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[3] Vilnius Univ, Inst Theoret Phys & Astron, Sauletekio Av 3, LT-10257 Vilnius, Lithuania
来源
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES | 2019年 / 6卷
基金
加拿大自然科学与工程研究理事会;
关键词
Yangian; vertex operator; Kac-Moody algebra; Fock space; twisted group algebra; central extension; LEVEL ONE REPRESENTATIONS; LIE-ALGEBRAS; AFFINE; EXTENSION; OPERATORS;
D O I
10.5802/jep.103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using vertex operators, we build representations of the Yangian of a simply laced Kac-Moody algebra and of its double. As a corollary, we prove the Poincare-Birkhoff-Witt property for simply laced affine Yangians.
引用
收藏
页码:665 / 706
页数:42
相关论文
共 42 条
[1]  
Appel A., 2019, ARXIV171203601
[2]   On the R-matrix realization of Yangians and their representations [J].
Arnaudon, Daniel ;
Molev, Alexander ;
Ragoucy, Eric .
ANNALES HENRI POINCARE, 2006, 7 (7-8) :1269-1325
[3]   VERTEX OPERATOR REPRESENTATIONS OF THE QUANTUM AFFINE ALGEBRA UG(BR(1)) [J].
BERNARD, D .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (03) :239-245
[4]   LEVEL ONE REPRESENTATIONS OF THE SIMPLE AFFINE KAC-MOODY ALGEBRAS IN THEIR HOMOGENEOUS GRADATIONS [J].
BERNARD, D ;
THIERRYMIEG, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (02) :181-246
[5]   Homomorphisms between different quantum toroidal and affine Yangian algebras [J].
Bershtein, Mikhail ;
Tsymbaliuk, Alexander .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (02) :867-899
[6]  
Chari W, 2001, DUKE MATH J, V108, P183
[7]   Weyl group extension of quantized current algebras [J].
Ding, J ;
Khoroshkin, S .
TRANSFORMATION GROUPS, 2000, 5 (01) :35-59
[8]   DEGENERATE AFFINE HECKE ALGEBRAS AND YANGIANS [J].
DRINFELD, VG .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (01) :58-60
[9]  
Finkelberg M., 2019, ARNOLD MATH J
[10]  
Frenkel I., 1988, VERTEX OPERATOR ALGE