Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting

被引:81
|
作者
Deng, Jie [1 ,2 ]
Guasch, Oriol [2 ]
Zheng, Ling [1 ]
Song, Tingting [1 ]
Cao, Yanshu [1 ]
机构
[1] Chongqing Univ, Coll Automot Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[2] Univ Ramon Llull, GTM Grp Recerca Tecnol Media, C Quatre Camins 30, Barcelona 08022, Catalonia, Spain
基金
中国国家自然科学基金;
关键词
Acoustic black holes; Energy harvesting; Piezoelectric bimorph cantilever; Gaussian expansion method; Piezoelectric effect; WAVE-PROPAGATION; SOUND RADIATION; FLEXURAL WAVE; VIBRATION; PLATE; ATTENUATION; BEAM; IMPROVEMENT;
D O I
10.1016/j.jsv.2020.115790
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
An acoustic black hole (ABH) beam termination can be achieved by decreasing its thickness according to a power-law profile. Waves entering the ABH slow down and vibrational energy strongly concentrates at the tip of the beam. This can be exploited for energy harvesting, as suggested in some recent works. The finite element method (FEM) is commonly used to carry out the simulations, which hampers long parametric analyzes. In this paper, we develop a semi-analytical approach to characterize the performance of a piezolectric bimorph cantilever with an ABH termination. The method can be easily extended to further configurations and allows one to determine ABH harvesting capabilities when varying system parameters, in a fast and efficient way. The Lagrangian of the ABH beam plus piezoelectric layers is constructed and the coupled equations for the flexural vibrations and voltage are derived from it. The flexural displacement field is expanded in terms of Gaussian basis functions. Vibration shapes and harvested power are computed with the proposed method and validated against FEM simulations. The ABH piezolectric bimorph cantilever is shown to substantially enhance the harvesting capabilities of a cantilever with uniform cross-section. The semi-analytical approach is then used to examine the influence of several ABH and piezoelectric layer parameters on energy harvesting efficiency. As regards the former, the effects of the tip truncation thickness and ABH order are explored. In what concerns the piezoelectric layer, we investigate the effects of its location, thickness, splitting it into several patches and varying the load resistors to enhance its performance in a broad frequency range. The proposed method constitutes a valuable tool for the design of ABH energy harvesting devices. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Piezoelectric energy harvesting from highly flexible cantilever beam
    Fallahpasand, Sam
    Dardel, Morteza
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL OF MULTI-BODY DYNAMICS, 2019, 233 (01) : 71 - 92
  • [32] Finite element analysis of a unimorph cantilever for piezoelectric energy harvesting
    Wang, Qingping
    Pei, Xuebing
    Wang, Qi
    Jiang, Shenglin
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2012, 40 (04) : 341 - 351
  • [33] Broadband energy harvesting using acoustic black hole structural tailoring
    Zhao, Liuxian
    Conlon, Stephen C.
    Semperlotti, Fabio
    SMART MATERIALS AND STRUCTURES, 2014, 23 (06)
  • [34] A semi-analytical method for characterizing vibrations in circular beams with embedded acoustic black holes
    Deng, Jie
    Guasch, Oriol
    Zheng, Ling
    JOURNAL OF SOUND AND VIBRATION, 2020, 476
  • [35] Design and Simulation of Piezoelectric Cantilever Beam Based on Mechanical Vibration for Energy Harvesting Application
    Uddin, Md. Naim
    Islam, Md. Shabiul
    Sampe, Jahariah
    Ali, Sawal H. Md
    Bhuyan, M. S.
    2016 INTERNATIONAL CONFERENCE ON INNOVATIONS IN SCIENCE, ENGINEERING AND TECHNOLOGY (ICISET 2016), 2016,
  • [36] Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance
    Kim, Ga-Yeon
    Peddigari, Mahesh
    Lim, Kyung-Won
    Hwang, Geon-Tae
    Yoon, Woon-Ha
    Choi, HongSoo
    Lee, Jung Woo
    Ryu, Jungho
    ELECTRONIC MATERIALS LETTERS, 2019, 15 (01) : 61 - 69
  • [37] Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance
    Ga-Yeon Kim
    Mahesh Peddigari
    Kyung-Won Lim
    Geon-Tae Hwang
    Woon-Ha Yoon
    HongSoo Choi
    Jung Woo Lee
    Jungho Ryu
    Electronic Materials Letters, 2019, 15 : 61 - 69
  • [38] Semi-Analytical Solutions for Wave Propagation of Periodically Repetitive Schwarz Primitive Triply Periodic Minimal Surface Based Structure Embedded With Acoustic Black Hole Resonators
    Ma, Yongbin
    Cheng, Qingfeng
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2023, 28 (03): : 278 - 287
  • [39] Piezoelectric Cantilever Prototype for Energy Harvesting in Computing Applications
    Beker, Levent
    Kulah, Haluk
    Muhtaroglu, Ali
    2011 INTERNATIONAL CONFERENCE ON ENERGY AWARE COMPUTING, 2011,
  • [40] Frequency Tuning of Unimorph Cantilever for Piezoelectric Energy Harvesting
    Kim, Hyung-Chan
    Song, Hyun-Cheol
    Jeong, Dae-Yong
    Kim, Hyun-Jai
    Yoon, Seok-Jin
    Ju, Byeong-Kwon
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2007, 17 (12): : 660 - 663