Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting

被引:81
|
作者
Deng, Jie [1 ,2 ]
Guasch, Oriol [2 ]
Zheng, Ling [1 ]
Song, Tingting [1 ]
Cao, Yanshu [1 ]
机构
[1] Chongqing Univ, Coll Automot Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[2] Univ Ramon Llull, GTM Grp Recerca Tecnol Media, C Quatre Camins 30, Barcelona 08022, Catalonia, Spain
基金
中国国家自然科学基金;
关键词
Acoustic black holes; Energy harvesting; Piezoelectric bimorph cantilever; Gaussian expansion method; Piezoelectric effect; WAVE-PROPAGATION; SOUND RADIATION; FLEXURAL WAVE; VIBRATION; PLATE; ATTENUATION; BEAM; IMPROVEMENT;
D O I
10.1016/j.jsv.2020.115790
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
An acoustic black hole (ABH) beam termination can be achieved by decreasing its thickness according to a power-law profile. Waves entering the ABH slow down and vibrational energy strongly concentrates at the tip of the beam. This can be exploited for energy harvesting, as suggested in some recent works. The finite element method (FEM) is commonly used to carry out the simulations, which hampers long parametric analyzes. In this paper, we develop a semi-analytical approach to characterize the performance of a piezolectric bimorph cantilever with an ABH termination. The method can be easily extended to further configurations and allows one to determine ABH harvesting capabilities when varying system parameters, in a fast and efficient way. The Lagrangian of the ABH beam plus piezoelectric layers is constructed and the coupled equations for the flexural vibrations and voltage are derived from it. The flexural displacement field is expanded in terms of Gaussian basis functions. Vibration shapes and harvested power are computed with the proposed method and validated against FEM simulations. The ABH piezolectric bimorph cantilever is shown to substantially enhance the harvesting capabilities of a cantilever with uniform cross-section. The semi-analytical approach is then used to examine the influence of several ABH and piezoelectric layer parameters on energy harvesting efficiency. As regards the former, the effects of the tip truncation thickness and ABH order are explored. In what concerns the piezoelectric layer, we investigate the effects of its location, thickness, splitting it into several patches and varying the load resistors to enhance its performance in a broad frequency range. The proposed method constitutes a valuable tool for the design of ABH energy harvesting devices. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Semi-analytical solutions for the forced vibration of plate structures terminated by multiple acoustic black hole beams
    Ma, Yongbin
    Fan, Junling
    Deng, Zichen
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (08)
  • [22] Degradation of bimorph piezoelectric bending beams in energy harvesting applications
    Pillatsch, P.
    Xiao, B. L.
    Shashoua, N.
    Gramling, H. M.
    Yeatman, E. M.
    Wright, P. K.
    SMART MATERIALS AND STRUCTURES, 2017, 26 (03)
  • [23] A model for the energy harvesting performance of shear mode piezoelectric cantilever
    Zhou, L.
    Sun, J.
    Zheng, X. J.
    Deng, S. F.
    Zhao, J. H.
    Peng, S. T.
    Zhang, Y.
    Wang, X. Y.
    Cheng, H. B.
    SENSORS AND ACTUATORS A-PHYSICAL, 2012, 179 : 185 - 192
  • [24] Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator
    Mishra, Kaushik
    Panda, Subrata K.
    Kumar, Vikash
    Dewangan, Hukum Chand
    SMART STRUCTURES AND SYSTEMS, 2020, 26 (03) : 391 - 401
  • [25] Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model
    Tang, Liling
    Cheng, Li
    Ji, Hongli
    Qiu, Jinhao
    JOURNAL OF SOUND AND VIBRATION, 2016, 374 : 172 - 184
  • [26] A unified nonlinear model of piezoelectric cantilever beams with complex geometries for energy harvesting applications
    Choudhary, Radhika
    Rzig, Imen
    Fotsing, Edith Roland
    Ross, Annie
    SMART MATERIALS AND STRUCTURES, 2025, 34 (02)
  • [27] Analytical model for nonlinear piezoelectric energy harvesting devices
    Neiss, S.
    Goldschmidtboeing, F.
    Kroener, M.
    Woias, P.
    SMART MATERIALS AND STRUCTURES, 2014, 23 (10)
  • [28] Harvesting energy from a cantilever piezoelectric beam
    Kim, S
    Johnson, TJ
    Clark, WW
    SMART STRUCTURES AND MATERIALS 2004: DAMPING AND ISOLATION, 2004, 5386 : 259 - 268
  • [29] Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure
    Na, Yonghyeon
    Lee, Min-Seon
    Lee, Jung Woo
    Jeong, Young Hun
    APPLIED ENERGY, 2020, 264
  • [30] Elastic and Electric Damping Effects on Piezoelectric Cantilever Energy Harvesting
    Huang, Hualin
    Zheng, Chengjunyi
    Ruan, Xuezheng
    Zeng, Jiangtao
    Zheng, Liaoying
    Chen, Wenyuan
    Li, Guorong
    FERROELECTRICS, 2014, 459 (01) : 1 - 13