MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

被引:50
|
作者
Stamova, Ivanka M. [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, One UTSA Circle, San Antonio, TX 78249 USA
关键词
Mittag-Leffler stability; impulsive fractional differential equations; Lyapunov functions; comparison principle;
D O I
10.1090/qam/1394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a nonlinear system of impulsive differential equations of fractional order. Applying the definition of Mittag-Leffler stability introduced by Podlubny and his co-authors and the fractional Lyapunov method, we give sufficient conditions for Mittag-Leffler stability and uniform asymptotic stability of the zero solution of the system under consideration.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 50 条
  • [31] Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations
    Dong, Wen
    Wang, Dongling
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (03) : 946 - 956
  • [32] Mittag-Leffler stability and application of delayed fractional-order competitive neural networks
    Zhang, Fanghai
    Huang, Tingwen
    Wu, Ailong
    Zeng, Zhigang
    NEURAL NETWORKS, 2024, 179
  • [33] Robust Mittag-Leffler stabilisation of fractional-order systems
    Jonathan Munoz-Vazquez, Aldo
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    Martinez-Reyes, Fernando
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2273 - 2281
  • [34] On the Mittag-Leffler Stability of Mixed-Order Fractional Homogeneous Cooperative Delay Systems
    Thinh, La V.
    Tuan, Hoang The
    VIETNAM JOURNAL OF MATHEMATICS, 2025,
  • [35] Mittag-Leffler stability and bifurcation of a nonlinear fractional model with relapse
    Lahrouz, Aadil
    Hajjami, Riane
    El Jarroudi, Mustapha
    Settati, Adel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386 (386)
  • [36] Mittag-Leffler stability of fractional-order Lorenz and Lorenz-family systems
    Ke Yunquan
    Miao Chunfang
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1237 - 1246
  • [37] Mittag-Leffler stability of nonlinear fractional neutral singular systems
    Liu, Song
    Li, Xiaoyan
    Jiang, Wei
    Zhou, Xianfeng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (10) : 3961 - 3966
  • [38] Mittag-Leffler stability analysis of a class of homogeneous fractional systems
    Fajraoui, Tarek
    Ghanmi, Boulbaba
    Mabrouk, Fehmi
    Omri, Faouzi
    ARCHIVES OF CONTROL SCIENCES, 2021, 31 (02) : 401 - 415
  • [39] Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks
    K. Udhayakumar
    R. Rakkiyappan
    Jin-de Cao
    Xue-gang Tan
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 234 - 246
  • [40] Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks
    Udhayakumar, K.
    Rakkiyappan, R.
    Cao, Jin-de
    Tan, Xue-gang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (02) : 234 - 246