MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

被引:49
|
作者
Stamova, Ivanka M. [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, One UTSA Circle, San Antonio, TX 78249 USA
关键词
Mittag-Leffler stability; impulsive fractional differential equations; Lyapunov functions; comparison principle;
D O I
10.1090/qam/1394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a nonlinear system of impulsive differential equations of fractional order. Applying the definition of Mittag-Leffler stability introduced by Podlubny and his co-authors and the fractional Lyapunov method, we give sufficient conditions for Mittag-Leffler stability and uniform asymptotic stability of the zero solution of the system under consideration.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 50 条
  • [31] Analysis of Higher-Order Fractional Differential Equations with Fractional Boundary Conditions and Stability Insights Involving the Mittag-Leffler Operator
    El Allaoui, A.
    Abdeljawad, T.
    Allaoui, Y.
    Hannabou, M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2024, 18 (02) : 1 - 25
  • [32] A generalization of the Mittag-Leffler function and solution of system of fractional differential equations
    Duan, Junsheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [33] Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel
    Kavitha, Velusamy
    Arjunan, Mani Mallika
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2022, 7 (05): : 9353 - 9372
  • [34] Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks
    Yang, Xujun
    Li, Chuandong
    Song, Qiankun
    Huang, Tingwen
    Chen, Xiaofeng
    NEUROCOMPUTING, 2016, 207 : 276 - 286
  • [35] New Solutions of the Fractional Differential Equations With Modified Mittag-Leffler Kernel
    Odibat, Zaid
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (09):
  • [36] On the oscillation of Caputo fractional differential equations with Mittag-Leffler nonsingular kernel
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 173 - 177
  • [37] Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects
    Phu, Nguyen Dinh
    Hoa, Ngo Van
    NONLINEAR DYNAMICS, 2023, 111 (10) : 9409 - 9430
  • [38] Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects
    Nguyen Dinh Phu
    Ngo Van Hoa
    Nonlinear Dynamics, 2023, 111 : 9409 - 9430
  • [39] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [40] Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay
    Lien, Nguyen Thi
    Hien, Le Van
    Thang, Nguyen Nhu
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3243 - 3248