MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

被引:50
|
作者
Stamova, Ivanka M. [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, One UTSA Circle, San Antonio, TX 78249 USA
关键词
Mittag-Leffler stability; impulsive fractional differential equations; Lyapunov functions; comparison principle;
D O I
10.1090/qam/1394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a nonlinear system of impulsive differential equations of fractional order. Applying the definition of Mittag-Leffler stability introduced by Podlubny and his co-authors and the fractional Lyapunov method, we give sufficient conditions for Mittag-Leffler stability and uniform asymptotic stability of the zero solution of the system under consideration.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 50 条
  • [21] Mittag-Leffler Stability of Fractional-Order Nonlinear Differential Systems With State-Dependent Delays
    Li, Hui
    Kao, Yonggui
    Chen, Yangquan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (05) : 2108 - 2116
  • [22] Generalized Mittag-Leffler Input Stability of the Fractional-Order Electrical Circuits
    Sene, Ndolane
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2020, 1 : 233 - 242
  • [23] Mittag-Leffler stability of nabla discrete fractional-order dynamic systems
    Wei, Yingdong
    Wei, Yiheng
    Chen, Yuquan
    Wang, Yong
    NONLINEAR DYNAMICS, 2020, 101 (01) : 407 - 417
  • [24] Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 416 - 422
  • [25] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288
  • [26] Generalized Mittag-Leffler Stability of Hilfer Fractional Order Nonlinear Dynamic System
    Wang, Guotao
    Qin, Jianfang
    Dong, Huanhe
    Guan, Tingting
    MATHEMATICS, 2019, 7 (06)
  • [27] A Mittag-Leffler fractional-order difference observer
    Miguel Delfin-Prieto, Sergio
    Martinez-Guerra, Rafael
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (05): : 2997 - 3018
  • [28] Mittag-Leffler stability for a fractional viscoelastic telegraph problem
    Tatar, Nasser-eddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14184 - 14205
  • [29] Design of impulsive controllers and impulsive control strategy for the Mittag-Leffler stability behavior of fractional gene regulatory networks
    Stamov, Trayan
    Stamova, Ivanka
    NEUROCOMPUTING, 2021, 424 : 54 - 62
  • [30] p-Moment Mittag-Leffler Stability of Riemann-Liouville Fractional Differential Equations with Random Impulses
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    Kopanov, Peter
    MATHEMATICS, 2020, 8 (08)