MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

被引:49
|
作者
Stamova, Ivanka M. [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, One UTSA Circle, San Antonio, TX 78249 USA
关键词
Mittag-Leffler stability; impulsive fractional differential equations; Lyapunov functions; comparison principle;
D O I
10.1090/qam/1394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a nonlinear system of impulsive differential equations of fractional order. Applying the definition of Mittag-Leffler stability introduced by Podlubny and his co-authors and the fractional Lyapunov method, we give sufficient conditions for Mittag-Leffler stability and uniform asymptotic stability of the zero solution of the system under consideration.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 50 条
  • [21] Generalized Mittag-Leffler quadrature methods for fractional differential equations
    Yu Li
    Yang Cao
    Yan Fan
    Computational and Applied Mathematics, 2020, 39
  • [22] MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Eloe, Paul
    Jonnalagadda, Jaganmohan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 977 - 992
  • [23] On the Mittag-Leffler Stability of Impulsive Fractional Solow-Type Models
    Stamova, Ivanka M.
    Stamov, Gani Tr.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (05) : 315 - 325
  • [24] Generalized Mittag-Leffler quadrature methods for fractional differential equations
    Li, Yu
    Cao, Yang
    Fan, Yan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [25] Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field
    Pratap, Anbalagan
    Raja, Ramachandran
    Alzabut, Jehad
    Cao, Jinde
    Rajchakit, Grienggrai
    Huang, Chuangxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) : 6223 - 6253
  • [26] Mittag-Leffler stability of fractional order nonlinear dynamic systems
    Li, Yan
    Chen, YangQuan
    Podlubny, Igor
    AUTOMATICA, 2009, 45 (08) : 1965 - 1969
  • [27] Ulam-Hyers-Rassias Mittag-Leffler stability of Π-fractional partial differential equations
    Rhaima, Mohamed
    Boucenna, Djalal
    Mchiri, Lassaad
    Benjemaa, Mondher
    Ben Makhlouf, Abdellatif
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [28] Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls
    Li, Hong-Li
    Hu, Cheng
    Jiang, Yao-Lin
    Zhang, Long
    Teng, Zhidong
    NEUROCOMPUTING, 2016, 214 : 233 - 241
  • [29] Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel
    Mohammed Al-Refai
    Abdalla Aljarrah
    Thabet Abdeljawad
    Advances in Difference Equations, 2021
  • [30] Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel
    Al-Refai, Mohammed
    Aljarrah, Abdalla
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)