Fusion of automatic target recognition algorithms

被引:2
作者
Rizvi, SA [1 ]
Nasrabadi, NM [1 ]
机构
[1] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA
来源
AUTOMATIC TARGET RECOGNITION XII | 2002年 / 4726卷
关键词
automatic target recognition; algorithm fusion; neural networks;
D O I
10.1117/12.477018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper*, we investigate several fusion techniques for designing a composite classifier to improve the performance (probability of correct classification) of FLIR ATR. The motivation behind the fusion of ATR algorithms is that if each contributing technique in a fusion algorithm (composite classifier) emphasizes on learning at least some features of the targets that are not learned by other contributing techniques for making a classification decision, a fusion of ATR algorithms may improve overall probability of correct classification of the composite classifier. In this research, we propose to use four ATR algorithms for fusion. We propose to use averaged Bayes classifier, committee of experts, stacked-generalization, winner-takes-all, and ranking-based fusion techniques for designing the composite classifiers. The experimental results show an improvement of more than 5% over the best individual performance.
引用
收藏
页码:122 / 132
页数:11
相关论文
共 16 条
  • [1] Parallel consensual neural networks
    Benediktsson, JA
    Sveinsson, JR
    Ersoy, OK
    Swain, PH
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (01): : 54 - 64
  • [3] BHARADWAJ P, 2001, UNPUB IEEE T PAMI
  • [4] CARIN L, 2001, FLIR CLASSIFICATION
  • [5] Multi-stage target recognition using modular vector quantizers and multilayer perceptrons
    Chan, LCA
    Nasrabadi, NM
    Mirelli, V
    [J]. 1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 114 - 119
  • [6] BOOSTING AND OTHER ENSEMBLE METHODS
    DRUCKER, H
    CORTES, C
    JACKEL, LD
    LECUN, Y
    VAPNIK, V
    [J]. NEURAL COMPUTATION, 1994, 6 (06) : 1289 - 1301
  • [7] Haykin S., 1994, NEURAL NETWORKS COMP
  • [8] HO TK, 1994, IEEE T PATTERN ANAL, V16, P66, DOI 10.1109/34.273716
  • [9] LEARNING PIECEWISE CONTROL STRATEGIES IN A MODULAR NEURAL-NETWORK ARCHITECTURE
    JACOBS, RA
    JORDAN, MI
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (02): : 337 - 345
  • [10] LECUN Y, 1989, CONNECTIONISM IN PERSPECTIVE, P143