New bounds for soft margin estimator via concavity of Gaussian weighting function

被引:15
作者
Ullah, Hidayat [1 ]
Adil Khan, Muhammad [1 ]
Pecaric, Josip [2 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[2] 2 RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
关键词
Concave function; Soft margin estimator; Gaussian weighting function; Jensen’ s inequality; Jaccard similarity function;
D O I
10.1186/s13662-020-03103-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we elaborate on the notion to obtain bounds for the soft margin estimator of "Identification of Patient Zero in Static and Temporal Network-Robustness and Limitations". To achieve these bounds for the soft margin estimator, we utilize the concavity of the Gaussian weighting function and well-known Jensen's inequality. To acquire some more general bounds for the soft margin estimator, we consider some general functions defined on rectangles. We also use the behavior of the Jaccard similarity function to extract some handsome bounds for the soft margin estimator.
引用
收藏
页数:10
相关论文
共 28 条
[1]   New estimates for generalized Shannon and Zipf-Mandelbrot entropies via convexity results [J].
Ahmad, Khurshid ;
Khan, Muhammad Adil ;
Khan, Shahid ;
Ali, Amjad ;
Chu, Yu-Ming .
RESULTS IN PHYSICS, 2020, 18
[2]   Bayesian Inference of Epidemics on Networks via Belief Propagation [J].
Altarelli, Fabrizio ;
Braunstein, Alfredo ;
Dall'Asta, Luca ;
Lage-Castellanos, Alejandro ;
Zecchina, Riccardo .
PHYSICAL REVIEW LETTERS, 2014, 112 (11)
[3]  
[Anonymous], 2013 INFORM THEORY A
[4]   Identification of Patient Zero in Static and Temporal Networks: Robustness and Limitations [J].
Antulov-Fantulin, Nino ;
Lancic, Alen ;
Smuc, Tomislav ;
Stefancic, Hrvoje ;
Sikic, Mile .
PHYSICAL REVIEW LETTERS, 2015, 114 (24)
[5]   CLUSTER OF CASES OF THE ACQUIRED IMMUNE-DEFICIENCY SYNDROME - PATIENTS LINKED BY SEXUAL CONTACT [J].
AUERBACH, DM ;
JAFFE, HW ;
CURRAN, JW ;
DARROW, WW .
AMERICAN JOURNAL OF MEDICINE, 1984, 76 (03) :487-492
[6]   Reaction-diffusion processes and metapopulation models in heterogeneous networks [J].
Colizza, Vittoria ;
Pastor-Satorras, Romualdo ;
Vespignani, Alessandro .
NATURE PHYSICS, 2007, 3 (04) :276-282
[7]   Identifying the starting point of a spreading process in complex networks [J].
Comin, Cesar Henrique ;
Costa, Luciano da Fontoura .
PHYSICAL REVIEW E, 2011, 84 (05)
[8]  
Dong W, 2013, IEEE INT SYMP INFO, P2671, DOI 10.1109/ISIT.2013.6620711
[9]   A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL [J].
Gray, A. ;
Greenhalgh, D. ;
Hu, L. ;
Mao, X. ;
Pan, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) :876-902
[10]  
Kelling M.J., 2011, MODELING INFECT DIS