Incremental Clustering for Categorical Data Using Clustering Ensemble

被引:0
作者
Li Taoying [1 ]
Chne Yan [1 ]
Qu Lili [1 ]
Mu Xiangwei [1 ]
机构
[1] Dalian Maritime Univ, Transportat Management Coll, Dalian 116026, Peoples R China
来源
PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE | 2010年
关键词
DataMining; Clustering; Incremental Clustering; Clustering Ensemble; K-MEANS ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
More and more data in practice is changing every minute and been collected in incremental mode, and incremental clustering has attracted much of researchers' attention. However, little research now focuses on partitioning categorical data in incremental mode. How to design incremental clustering for categorical data is an urgent problem. We propose an incremental clustering for categorical data using clustering ensemble in this paper. We firstly prune redundant attributes if needed, and then make use of true values of different attributes to form clustering memberships, and next use clustering ensemble to merge or divide clusters to gain optimal clustering. Finally, the proposed algorithm is applied in Yellow- Small dataset, Diagnosis dataset and Zoo dataset and results show that it is effective.
引用
收藏
页码:2519 / 2524
页数:6
相关论文
共 50 条
  • [21] Coercion: A Distributed Clustering Algorithm for Categorical Data
    Wang, Bin
    Zhou, Yang
    Hei, Xinhong
    2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 683 - 687
  • [22] On clustering tree structured data with categorical nature
    Boutsinas, B.
    Papastergiou, T.
    PATTERN RECOGNITION, 2008, 41 (12) : 3613 - 3623
  • [23] Mining categorical sequences from data using a hybrid clustering method
    De Angelis, Luca
    Dias, Jose G.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 234 (03) : 720 - 730
  • [24] Cluster Feature-Based Incremental Clustering Approach (CFICA) For Numerical Data
    Sowjanya, A. M.
    Shashi, M.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (09): : 73 - 79
  • [25] Incremental Clustering on Linked Data
    Nentwig, Markus
    Rahm, Erhard
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 531 - 538
  • [26] Efficiency Based Categorical Data Clustering
    Kalaivani, K.
    Raghavendra, A. P. V.
    2012 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2012, : 550 - 553
  • [27] Document Clustering Using Gravitational Ensemble Clustering
    Sadeghian, Armindokht Hashempour
    Nezamabadi-pour, Hossein
    2015 INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2015, : 240 - 245
  • [28] Clustering categorical data: an approach based on dynamical systems
    Gibson, D
    Kleinberg, J
    Raghavan, P
    VLDB JOURNAL, 2000, 8 (3-4) : 222 - 236
  • [29] Dynamic Data Retrieval Using Incremental Clustering and Indexing
    Priya, Uma D.
    Thilagam, Santhi P.
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2020, 10 (03) : 74 - 91
  • [30] CLUSTERING CATEGORICAL DATA BASED ON COMBINATIONS OF ATTRIBUTE VALUES
    Do, Hee-Jung
    Kim, Jae Yearn
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (12A): : 4393 - 4405