Incremental Clustering for Categorical Data Using Clustering Ensemble

被引:0
作者
Li Taoying [1 ]
Chne Yan [1 ]
Qu Lili [1 ]
Mu Xiangwei [1 ]
机构
[1] Dalian Maritime Univ, Transportat Management Coll, Dalian 116026, Peoples R China
来源
PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE | 2010年
关键词
DataMining; Clustering; Incremental Clustering; Clustering Ensemble; K-MEANS ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
More and more data in practice is changing every minute and been collected in incremental mode, and incremental clustering has attracted much of researchers' attention. However, little research now focuses on partitioning categorical data in incremental mode. How to design incremental clustering for categorical data is an urgent problem. We propose an incremental clustering for categorical data using clustering ensemble in this paper. We firstly prune redundant attributes if needed, and then make use of true values of different attributes to form clustering memberships, and next use clustering ensemble to merge or divide clusters to gain optimal clustering. Finally, the proposed algorithm is applied in Yellow- Small dataset, Diagnosis dataset and Zoo dataset and results show that it is effective.
引用
收藏
页码:2519 / 2524
页数:6
相关论文
共 31 条
[1]  
Agrawal R., 1998, SIGMOD Record, V27, P94, DOI 10.1145/276305.276314
[2]  
[Anonymous], 1997, P 20 9 ANN ACM S THE, DOI DOI 10.1145/258533.258657
[3]  
[Anonymous], J N CHINA I ASTRONAU
[4]  
[Anonymous], COMPUTER ENG APPL
[5]   INCREMENTAL CLUSTERING FOR VERY LARGE DOCUMENT DATABASES - INITIAL MARIAN EXPERIENCE [J].
CAN, F ;
FOX, EA ;
SNAVELY, CD ;
FRANCE, RK .
INFORMATION SCIENCES, 1995, 84 (1-2) :101-114
[6]   INCREMENTAL CLUSTERING FOR DYNAMIC INFORMATION-PROCESSING [J].
CAN, F .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1993, 11 (02) :143-164
[7]   ART-3 - HIERARCHICAL SEARCH USING CHEMICAL TRANSMITTERS IN SELF-ORGANIZING PATTERN-RECOGNITION ARCHITECTURES [J].
CARPENTER, GA ;
GROSSBERG, S .
NEURAL NETWORKS, 1990, 3 (02) :129-152
[8]  
Chen N., 2007, J SOFTWARE, V13, P1
[9]  
Ester M., 1998, Proceedings of the Twenty-Fourth International Conference on Very-Large Databases, P323
[10]  
Fisher D. H., 1987, Machine Learning, V2, P139, DOI 10.1023/A:1022852608280