Programmable four-photon graph states on a silicon chip

被引:97
作者
Adcock, Jeremy C. [1 ,2 ]
Vigliar, Caterina [1 ,2 ]
Santagati, Raffaele [1 ,2 ]
Silverstone, Joshua W. [1 ,2 ]
Thompson, Mark G. [1 ,2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Quantum Engn Technol QET Labs, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Sch Comp Elect Engn & Engn Math, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
UNENTANGLED PHOTON PAIRS; QUANTUM; ENTANGLEMENT; ARRAY;
D O I
10.1038/s41467-019-11489-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Future quantum computers require a scalable architecture on a scalable technology-one that supports millions of high-performance components. Measurement-based protocols, using graph states, represent the state of the art in architectures for optical quantum computing. Silicon photonics technology offers enormous scale and proven quantum optical functionality. Here we produce and encode photonic graph states on a mass-manufactured chip, using four on-chip-generated photons. We programmably generate all types of four-photon graph state, implementing a basic measurement-based protocol, and measure high-visibility heralded interference of the chip's four photons. We develop a model of the device and bound the dominant sources of error using Bayesian inference. The combination of measurement-based quantum computation, silicon photonics technology, and on-chip multipair sources will be a useful one for future scalable quantum information processing with photons.
引用
收藏
页数:6
相关论文
共 42 条
  • [21] Hein M., 2006, PREPRINT
  • [22] MEASUREMENT OF SUBPICOSECOND TIME INTERVALS BETWEEN 2 PHOTONS BY INTERFERENCE
    HONG, CK
    OU, ZY
    MANDEL, L
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (18) : 2044 - 2046
  • [23] A scheme for efficient quantum computation with linear optics
    Knill, E
    Laflamme, R
    Milburn, GJ
    [J]. NATURE, 2001, 409 (6816) : 46 - 52
  • [24] Systematic analysis of complex genetic interactions
    Kuzmin, Elena
    VanderSluis, Benjamin
    Wang, Wen
    Tan, Guihong
    Deshpande, Raamesh
    Chen, Yiqun
    Usaj, Matej
    Balint, Attila
    Usaj, Mojca Mattiazzi
    van Leeuwen, Jolanda
    Koch, Elizabeth N.
    Pons, Carles
    Dagilis, Andrius J.
    Pryszlak, Michael
    YangWang, Jason Zi
    Hanchard, Julia
    Riggi, Margot
    Xu, Kaicong
    Heydari, Hamed
    Luis, Bryan-Joseph San
    Shuteriqi, Ermira
    Zhu, Hongwei
    Van Dyk, Nydia
    Sharifpoor, Sara
    Costanzo, Michael
    Loewith, Robbie
    Caudy, Amy
    Bolnick, Daniel
    Brown, Grant W.
    Andrews, Brenda J.
    Boone, Charles
    Myers, Chad L.
    [J]. SCIENCE, 2018, 360 (6386)
  • [25] Graph states for quantum secret sharing
    Markham, Damian
    Sanders, Barry C.
    [J]. PHYSICAL REVIEW A, 2008, 78 (04):
  • [26] Silica-on-silicon waveguide quantum circuits
    Politi, Alberto
    Cryan, Martin J.
    Rarity, John G.
    Yu, Siyuan
    O'Brien, Jeremy L.
    [J]. SCIENCE, 2008, 320 (5876) : 646 - 649
  • [27] Topological fault-tolerance in cluster state quantum computation
    Raussendorf, R.
    Harrington, J.
    Goyal, K.
    [J]. NEW JOURNAL OF PHYSICS, 2007, 9
  • [28] A one-way quantum computer
    Raussendorf, R
    Briegel, HJ
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5188 - 5191
  • [29] Why I am optimistic about the silicon-photonic route to quantum computing
    Rudolph, Terry
    [J]. APL PHOTONICS, 2017, 2 (03)
  • [30] Generation of correlated photons in nanoscale silicon waveguides
    Sharping, Jay E.
    Lee, Kim Fook
    Foster, Mark A.
    Turner, Amy C.
    Schmidt, Bradley S.
    Lipson, Michal
    Gaeta, Alexander L.
    Kumar, Prem
    [J]. OPTICS EXPRESS, 2006, 14 (25): : 12388 - 12393