Programmable four-photon graph states on a silicon chip

被引:106
作者
Adcock, Jeremy C. [1 ,2 ]
Vigliar, Caterina [1 ,2 ]
Santagati, Raffaele [1 ,2 ]
Silverstone, Joshua W. [1 ,2 ]
Thompson, Mark G. [1 ,2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Quantum Engn Technol QET Labs, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Sch Comp Elect Engn & Engn Math, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
UNENTANGLED PHOTON PAIRS; QUANTUM; ENTANGLEMENT; ARRAY;
D O I
10.1038/s41467-019-11489-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Future quantum computers require a scalable architecture on a scalable technology-one that supports millions of high-performance components. Measurement-based protocols, using graph states, represent the state of the art in architectures for optical quantum computing. Silicon photonics technology offers enormous scale and proven quantum optical functionality. Here we produce and encode photonic graph states on a mass-manufactured chip, using four on-chip-generated photons. We programmably generate all types of four-photon graph state, implementing a basic measurement-based protocol, and measure high-visibility heralded interference of the chip's four photons. We develop a model of the device and bound the dominant sources of error using Bayesian inference. The combination of measurement-based quantum computation, silicon photonics technology, and on-chip multipair sources will be a useful one for future scalable quantum information processing with photons.
引用
收藏
页数:6
相关论文
共 42 条
[21]  
Hein M., 2006, PREPRINT
[22]   MEASUREMENT OF SUBPICOSECOND TIME INTERVALS BETWEEN 2 PHOTONS BY INTERFERENCE [J].
HONG, CK ;
OU, ZY ;
MANDEL, L .
PHYSICAL REVIEW LETTERS, 1987, 59 (18) :2044-2046
[23]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[24]   Systematic analysis of complex genetic interactions [J].
Kuzmin, Elena ;
VanderSluis, Benjamin ;
Wang, Wen ;
Tan, Guihong ;
Deshpande, Raamesh ;
Chen, Yiqun ;
Usaj, Matej ;
Balint, Attila ;
Usaj, Mojca Mattiazzi ;
van Leeuwen, Jolanda ;
Koch, Elizabeth N. ;
Pons, Carles ;
Dagilis, Andrius J. ;
Pryszlak, Michael ;
YangWang, Jason Zi ;
Hanchard, Julia ;
Riggi, Margot ;
Xu, Kaicong ;
Heydari, Hamed ;
Luis, Bryan-Joseph San ;
Shuteriqi, Ermira ;
Zhu, Hongwei ;
Van Dyk, Nydia ;
Sharifpoor, Sara ;
Costanzo, Michael ;
Loewith, Robbie ;
Caudy, Amy ;
Bolnick, Daniel ;
Brown, Grant W. ;
Andrews, Brenda J. ;
Boone, Charles ;
Myers, Chad L. .
SCIENCE, 2018, 360 (6386)
[25]   Graph states for quantum secret sharing [J].
Markham, Damian ;
Sanders, Barry C. .
PHYSICAL REVIEW A, 2008, 78 (04)
[26]   Silica-on-silicon waveguide quantum circuits [J].
Politi, Alberto ;
Cryan, Martin J. ;
Rarity, John G. ;
Yu, Siyuan ;
O'Brien, Jeremy L. .
SCIENCE, 2008, 320 (5876) :646-649
[27]   Topological fault-tolerance in cluster state quantum computation [J].
Raussendorf, R. ;
Harrington, J. ;
Goyal, K. .
NEW JOURNAL OF PHYSICS, 2007, 9
[28]   A one-way quantum computer [J].
Raussendorf, R ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5188-5191
[29]   Why I am optimistic about the silicon-photonic route to quantum computing [J].
Rudolph, Terry .
APL PHOTONICS, 2017, 2 (03)
[30]   Generation of correlated photons in nanoscale silicon waveguides [J].
Sharping, Jay E. ;
Lee, Kim Fook ;
Foster, Mark A. ;
Turner, Amy C. ;
Schmidt, Bradley S. ;
Lipson, Michal ;
Gaeta, Alexander L. ;
Kumar, Prem .
OPTICS EXPRESS, 2006, 14 (25) :12388-12393