The structure of disjoint iteration groups on the circle

被引:3
作者
Cieplinski, K [1 ]
机构
[1] Pedag Univ, Math Inst, PL-30084 Krakow, Poland
关键词
(disjoint; non-singular; singular; non-dense; dense; discrete) iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations;
D O I
10.1023/B:CMAJ.0000027254.04824.0c
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle S-1, that is, families F = {F-v: S-1 --> S-1; v is an element of V} of homeomorphisms such that F-v1 omicron F-v2 = Fv1+v2, v(1), v(2) is an element of V, and each F-v either is the identity mapping or has no fixed point ((V, +) is an arbitrary 2-divisible nontrivial (i.e., card V > 1) abelian group).
引用
收藏
页码:131 / 153
页数:23
相关论文
共 20 条
[1]  
Alseda L., 1993, ADV SERIES NONLINEAR, V5
[2]  
[Anonymous], 1971, ELEMENTS MATH MATIQU
[3]  
[Anonymous], 1971, DIFFERENTIABLE DYNAM
[4]  
BAJGER M, 1996, ITERATION THEORY, P265
[5]  
Bajger M., 1998, AEQUATIONES MATH, V55, P106
[6]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[7]  
Ciepli'nski Krzysztof, 2002, [Bulletin of the KMS, 대한수학회보], V39, P333
[8]  
Cieplinski K, 1999, PUBL MATH-DEBRECEN, V55, P363
[9]   On a system of Schroder equations on the circle [J].
Cieplinski, K ;
Zdun, MC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07) :1883-1888
[10]  
CIEPLINSKI K, 2000, PRACE MAT, V17, P83