A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis

被引:4
作者
Tucker, George
Loh, Po-Ru
Berger, Bonnie [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
SACCHAROMYCES-CEREVISIAE; DROSOPHILA-MELANOGASTER; INTERACTION NETWORKS; COMPLEXES; IDENTIFICATION; MAP;
D O I
10.1186/1471-2105-14-299
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. Results: We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Conclusions: Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely possible. Fruitful future directions may include investigating more sophisticated schemes for converting spectral counts to probabilities and applying the framework to direct protein complex prediction methods.
引用
收藏
页数:9
相关论文
共 28 条
[11]   A Protein Complex Network of Drosophila melanogaster [J].
Guruharsha, K. G. ;
Rual, Jean-Francois ;
Zhai, Bo ;
Mintseris, Julian ;
Vaidya, Pujita ;
Vaidya, Namita ;
Beekman, Chapman ;
Wong, Christina ;
Rhee, David Y. ;
Cenaj, Odise ;
McKillip, Emily ;
Shah, Saumini ;
Stapleton, Mark ;
Wan, Kenneth H. ;
Yu, Charles ;
Parsa, Bayan ;
Carlson, Joseph W. ;
Chen, Xiao ;
Kapadia, Bhaveen ;
VijayRaghavan, K. ;
Gygi, Steven P. ;
Celniker, Susan E. ;
Obar, Robert A. ;
Artavanis-Tsakonas, Spyros .
CELL, 2011, 147 (03) :690-703
[12]   A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality [J].
Hart, G. Traver ;
Lee, Insuk ;
Marcotte, Edward R. .
BMC BIOINFORMATICS, 2007, 8 (1)
[13]   Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry [J].
Ho, Y ;
Gruhler, A ;
Heilbut, A ;
Bader, GD ;
Moore, L ;
Adams, SL ;
Millar, A ;
Taylor, P ;
Bennett, K ;
Boutilier, K ;
Yang, LY ;
Wolting, C ;
Donaldson, I ;
Schandorff, S ;
Shewnarane, J ;
Vo, M ;
Taggart, J ;
Goudreault, M ;
Muskat, B ;
Alfarano, C ;
Dewar, D ;
Lin, Z ;
Michalickova, K ;
Willems, AR ;
Sassi, H ;
Nielsen, PA ;
Rasmussen, KJ ;
Andersen, JR ;
Johansen, LE ;
Hansen, LH ;
Jespersen, H ;
Podtelejnikov, A ;
Nielsen, E ;
Crawford, J ;
Poulsen, V ;
Sorensen, BD ;
Matthiesen, J ;
Hendrickson, RC ;
Gleeson, F ;
Pawson, T ;
Moran, MF ;
Durocher, D ;
Mann, M ;
Hogue, CWV ;
Figeys, D ;
Tyers, M .
NATURE, 2002, 415 (6868) :180-183
[14]   A comprehensive two-hybrid analysis to explore the yeast protein interactome [J].
Ito, T ;
Chiba, T ;
Ozawa, R ;
Yoshida, M ;
Hattori, M ;
Sakaki, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4569-4574
[15]   Global landscape of HIV-human protein complexes [J].
Jaeger, Stefanie ;
Cimermancic, Peter ;
Gulbahce, Natali ;
Johnson, Jeffrey R. ;
McGovern, Kathryn E. ;
Clarke, Starlynn C. ;
Shales, Michael ;
Mercenne, Gaelle ;
Pache, Lars ;
Li, Kathy ;
Hernandez, Hilda ;
Jang, Gwendolyn M. ;
Roth, Shoshannah L. ;
Akiva, Eyal ;
Marlett, John ;
Stephens, Melanie ;
D'Orso, Ivan ;
Fernandes, Jason ;
Fahey, Marie ;
Mahon, Cathal ;
O'Donoghue, Anthony J. ;
Todorovic, Aleksandar ;
Morris, John H. ;
Maltby, David A. ;
Alber, Tom ;
Cagney, Gerard ;
Bushman, Frederic D. ;
Young, John A. ;
Chanda, Sumit K. ;
Sundquist, Wesley I. ;
Kortemme, Tanja ;
Hernandez, Ryan D. ;
Craik, Charles S. ;
Burlingame, Alma ;
Sali, Andrej ;
Frankel, Alan D. ;
Krogan, Nevan J. .
NATURE, 2012, 481 (7381) :365-370
[16]   Modeling Contaminants in AP-MS/MS Experiments [J].
Lavallee-Adam, Mathieu ;
Cloutier, Philippe ;
Coulombe, Benoit ;
Blanchette, Mathieu .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (02) :886-895
[17]   DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila [J].
Murali, Thilakam ;
Pacifico, Svetlana ;
Yu, Jingkai ;
Guest, Stephen ;
Roberts, George G., III ;
Finley, Russell L., Jr. .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D736-D743
[18]   Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments [J].
Nesvizhskii, Alexey I. .
PROTEOMICS, 2012, 12 (10) :1639-1655
[19]   Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics [J].
Sardiu, Mihaela E. ;
Cai, Yong ;
Jin, Jingji ;
Swanson, Selene K. ;
Conaway, Ronald C. ;
Conaway, Joan W. ;
Florens, Laurence ;
Washburn, Michael P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (05) :1454-1459
[20]   Evaluation of Clustering Algorithms for Protein Complex and Protein Interaction Network Assembly [J].
Sardiu, Mihaela E. ;
Florens, Laurence ;
Washburn, Michael P. .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (06) :2944-2952