Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

被引:48
作者
Di Tomaso, Enza [1 ]
Schutgens, Nick A. J. [2 ,5 ]
Jorba, Oriol [1 ]
Garcia-Pando, Carlos Perez [3 ,4 ,6 ]
机构
[1] Barcelona Supercomp Ctr, Dept Earth Sci, Barcelona, Spain
[2] Univ Oxford, Atmospher Ocean & Planetary Phys, Oxford OX1 2JD, England
[3] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Vrije Univ, Fac Life & Earth Sci, Amsterdam, Netherlands
[6] Barcelona Supercomp Ctr, Dept Earth Sci, Barcelona, Spain
关键词
ENSEMBLE KALMAN FILTER; OPTICAL DEPTH; SAHARAN DUST; DESERT DUST; MEDITERRANEAN BASIN; EMISSION SCHEMES; DAILY MORTALITY; GLOBAL SCALES; MODEL; TRANSPORT;
D O I
10.5194/gmd-10-1107-2017
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.
引用
收藏
页码:1107 / 1129
页数:23
相关论文
共 78 条
[1]   Gaussian anamorphosis in the analysis step of the EnKF: a joint state-variable/observation approach [J].
Amezcua, Javier ;
Van Leeuwen, Peter Jan .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2014, 66 :1-18
[2]  
Anderson TL, 2003, J ATMOS SCI, V60, P119, DOI 10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO
[3]  
2
[4]  
[Anonymous], ATBDMOD30 MODIS
[5]   Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale [J].
Badia, Alba ;
Jorba, Oriol ;
Voulgarakis, Apostolos ;
Dabdub, Donald ;
Perez Garcia-Pando, Carlos ;
Hilboll, Andreas ;
Goncalves, Maria ;
Janjic, Zavisa .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :609-638
[6]   Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations [J].
Basart, S. ;
Perez, C. ;
Cuevas, E. ;
Baldasano, J. M. ;
Gobbi, G. P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (21) :8265-8282
[7]   Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation [J].
Benedetti, A. ;
Morcrette, J. -J. ;
Boucher, O. ;
Dethof, A. ;
Engelen, R. J. ;
Fisher, M. ;
Flentje, H. ;
Huneeus, N. ;
Jones, L. ;
Kaiser, J. W. ;
Kinne, S. ;
Mangold, A. ;
Razinger, M. ;
Simmons, A. J. ;
Suttie, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[8]  
Bishop CH, 2001, MON WEATHER REV, V129, P420, DOI 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO
[9]  
2
[10]   Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models [J].
Bocquet, M. ;
Elbern, H. ;
Eskes, H. ;
Hirtl, M. ;
Zabkar, R. ;
Carmichael, G. R. ;
Flemming, J. ;
Inness, A. ;
Pagowski, M. ;
Perez Camano, J. L. ;
Saide, P. E. ;
San Jose, R. ;
Sofiev, M. ;
Vira, J. ;
Baklanov, A. ;
Carnevale, C. ;
Grell, G. ;
Seigneur, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (10) :5325-5358