Microstructure and ion transport in Li1+x Ti2-x M x (PO4)3 (M = Cr, Fe, Al) NASICON-type materials

被引:19
作者
Svitan'ko, A. I. [1 ]
Novikova, S. A. [1 ]
Stenina, I. A. [1 ]
Skopets, V. A. [1 ]
Yaroslavtsev, A. B. [1 ]
机构
[1] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
SOLID ELECTROLYTES; CATION MOBILITY; CONDUCTORS; CONDUCTIVITY; PHOSPHATES; CHEMISTRY;
D O I
10.1134/S0020168514030145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Li1 + x Ti2 - x M (x) (PO4)(3) (M = Cr, Fe, Al) NASICON-type materials have been prepared by the Pechini process and solid-state reactions and characterized by X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. We have identified the factors that determine the rate of ion transport in nanocrystalline and bulk samples at low and high temperatures. The effects of the preparation procedure and heterovalent doping on the ionic conductivity of the materials have been assessed. Heterovalent doping is shown to have a considerably stronger effect on the ionic conductivity in comparison with the microstructure of the materials.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [41] Ionic Transport and Electrochemical Properties of NaSICON-Type Li1+XHf2-XGaX(PO4)3 for All-Solid-State Lithium Batteries
    Ladenstein, Lukas
    Hogrefe, Katharina
    Wilkening, H. Martin R.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) : 8823 - 8834
  • [42] Li-ion transport studies of NASICON-type LiZr2(PO4)3 solid electrolyte crystallizing in rhombohedral structure at room temperature
    Khatua, Sumit
    Rao, Y. Bhaskara
    Achary, K. Ramakrushna
    Patro, L. N.
    SURFACES AND INTERFACES, 2023, 41
  • [43] NASICON-type Li1+2xZr2-xCax(PO4)3 with high ionic conductivity at room temperature
    Xie, Hui
    Li, Yutao
    Goodenough, John B.
    RSC ADVANCES, 2011, 1 (09) : 1728 - 1731
  • [44] NMR investigations of Li+ ion dynamics in the NASICON ionic conductors Li1-xLax/3□2x/3Zr2(PO4)3
    Barre, Maud
    Emery, Joel
    Florian, Pierre
    Le Berre, Francoise
    Crosnier-Lopez, Marie-Pierre
    Fourquet, Jean-Louis
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (17)
  • [45] Preparation, characterization and conductivity studies of Li1.3M0.3Ti1.7 (PO4)3 (M = Al, Cr and Fe) glass-ceramics
    Zhang, Meimei
    Liu, Jianan
    He, Wen
    PROGRESS IN MATERIALS AND PROCESSES, PTS 1-3, 2013, 602-604 : 548 - 552
  • [46] Glass-Ceramic Na3+x[(Zr/Cr)x(Sc/Ti)2-x(PO4)3 Electrolyte Materials for Na-Ion Full-Cell Application
    Gandi, Shyam Sundar
    Katta, Vamsi Krishna
    Jayasankar, C. K.
    Pecharapa, Wisanu
    Ravuri, Balaji Rao
    INTEGRATED FERROELECTRICS, 2023, 238 (01) : 334 - 342
  • [47] Hybrid solid state electrolytes blending NASICON-type Li1+xAlxTi2-x(PO4)3 with poly(vinylidene fluoride-co-hexafluoropropene) for lithium metal batteries
    Chen, Shu-Yu
    Hsieh, Chien-Te
    Zhang, Ren-Shuo
    Mohanty, Debabrata
    Gandomi, Yasser Ashraf
    Hung, I-Ming
    ELECTROCHIMICA ACTA, 2022, 427
  • [48] Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study
    Arbi, K.
    Hoelzel, M.
    Kuhn, A.
    Garcia-Alvarado, F.
    Sanz, J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) : 18397 - 18405
  • [49] New Li0.8M0.1Ti2(PO4)3(M=Co, Mg) Electrode Materials for Lithium-Ion Batteries: In Operando X-Ray Diffraction and Ex Situ X-ray Photoelectron Spectroscopy Investigations
    Aziam, Hasna
    Darma, Mariyam Susana Dewi
    Knapp, Michael
    Indris, Sylvio
    Ehrenberg, Helmut
    Trouillet, Vanessa
    Saadoune, Ismael
    CHEMELECTROCHEM, 2020, 7 (17) : 3637 - 3645
  • [50] Evolution of microstructure and its relation to ionic conductivity in Li1+xAlxTi2-x(PO4)3
    Hupfer, Thomas
    Bucharsky, Ethel C.
    Schell, Karl G.
    Senyshyn, Anatoliy
    Monchak, Mykhailo
    Hoffmann, Michael J.
    Ehrenberg, Helmut
    SOLID STATE IONICS, 2016, 288 : 235 - 239