Microstructure and ion transport in Li1+x Ti2-x M x (PO4)3 (M = Cr, Fe, Al) NASICON-type materials

被引:19
作者
Svitan'ko, A. I. [1 ]
Novikova, S. A. [1 ]
Stenina, I. A. [1 ]
Skopets, V. A. [1 ]
Yaroslavtsev, A. B. [1 ]
机构
[1] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
SOLID ELECTROLYTES; CATION MOBILITY; CONDUCTORS; CONDUCTIVITY; PHOSPHATES; CHEMISTRY;
D O I
10.1134/S0020168514030145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Li1 + x Ti2 - x M (x) (PO4)(3) (M = Cr, Fe, Al) NASICON-type materials have been prepared by the Pechini process and solid-state reactions and characterized by X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. We have identified the factors that determine the rate of ion transport in nanocrystalline and bulk samples at low and high temperatures. The effects of the preparation procedure and heterovalent doping on the ionic conductivity of the materials have been assessed. Heterovalent doping is shown to have a considerably stronger effect on the ionic conductivity in comparison with the microstructure of the materials.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [21] Phase transitions of the NASICON-type mixed phosphates LiM2(PO4)3 (M = Ti, Zr) and LiInNb(PO4)3
    Pinus, I. Yu.
    Shaikhlislamova, A. R.
    Stenina, I. A.
    Zhuravlev, N. A.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2009, 45 (12) : 1370 - 1374
  • [22] Phase transitions of the NASICON-type mixed phosphates LiM2(PO4)3 (M = Ti, Zr) and LiInNb(PO4)3
    I. Yu. Pinus
    A. R. Shaikhlislamova
    I. A. Stenina
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Inorganic Materials, 2009, 45 : 1370 - 1374
  • [23] Spray-Flame Synthesis of NASICON-Type Rhombohedral (α) Li1+xYxZr2-x(PO4)3 [x=0-0.2] Solid Electrolytes
    Ali, Md Yusuf
    Chen, Tianyu
    Orthner, Hans
    Wiggers, Hartmut
    NANOMATERIALS, 2024, 14 (15)
  • [24] Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2−x(PO4)3
    Agnes Lakshmanan
    Ramkumar Gurusamy
    Sabarinathan Venkatachalam
    Ionics, 2023, 29 : 5123 - 5138
  • [25] Study of NASICON Structured Lithium Ion Conductor Li1+xAlxZr2-x(PO4)3
    Lu, Xiaojuan
    Feng, Xue
    Lin, Wenwei
    Liu, Haitao
    Zeng, Yunjie
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING, 2015, 23 : 227 - 230
  • [26] NASICON-Type Li1+xAlxZryTi2-x-y(PO4)3 Solid Electrolytes: Effect of Al, Zr Co-Doping and Synthesis Method
    Stenina, Irina
    Pyrkova, Anastasia
    Yaroslavtsev, Andrey
    BATTERIES-BASEL, 2023, 9 (01):
  • [27] Carbon Coated NASICON Type Li3V2-xMx(PO4)3 (M=Mn, Fe and Al) Materials with Enhanced Cyclability for Li-Ion Batteries
    Son, J. N.
    Kim, G. J.
    Kim, M. C.
    Kim, S. H.
    Aravindan, V.
    Lee, Y. G.
    Lee, Y. S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (01) : A87 - A92
  • [28] Li mobility in Nasicon-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy
    Arbi, K.
    Paris, M. A.
    Sanz, J.
    DALTON TRANSACTIONS, 2011, 40 (39) : 10195 - 10202
  • [29] Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics
    Narvaez-Semanate, J. L.
    Rodrigues, A. C. M.
    SOLID STATE IONICS, 2010, 181 (25-26) : 1197 - 1204
  • [30] The preparation of NASICON-type solid electrolyte lithium-ion Li1+xALxGe0.2Ti1.8-x(PO4)3 by conventional solid-state method
    Shang, X. F.
    Zhang, J. H.
    Cheng, S.
    Wang, Y. W.
    2ND INTERNATIONAL WORKSHOP ON MATERIALS SCIENCE AND MECHANICAL ENGINEERING (IWMSME2018), 2019, 504