On the conformal systoles of four-manifolds

被引:2
作者
Hamilton, M. J. D. [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
D O I
10.1007/s00229-006-0043-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend a result of M. Katz on conformal systoles to all four-manifolds with b(2)(+) = 1 which have odd intersection form. The same result holds for all four-manifolds with b(2)(+) = 1 with even intersection form and which are symplectic or satisfy the so-called 5/4-conjecture.
引用
收藏
页码:417 / 424
页数:8
相关论文
共 50 条
[31]   HYPERBOLIC FOUR-MANIFOLDS WITH ONE CUSP [J].
Kolpakov, Alexander ;
Martelli, Bruno .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (06) :1903-1933
[32]   Four-manifolds with positive isotropic curvature [J].
Chen, Bing-Long ;
Huang, Xian-Tao .
FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) :1123-1149
[33]   FOUR-MANIFOLDS WITH POSITIVE YAMABE CONSTANT [J].
Fu, Hai-Ping .
PACIFIC JOURNAL OF MATHEMATICS, 2018, 296 (01) :79-104
[34]   Twisted index on hyperbolic four-manifolds [J].
Daniele Iannotti ;
Antonio Pittelli .
Letters in Mathematical Physics, 114
[35]   Four-manifolds with positive isotropic curvature [J].
Bing-Long Chen ;
Xian-Tao Huang .
Frontiers of Mathematics in China, 2016, 11 :1123-1149
[36]   ALMOST TORIC SYMPLECTIC FOUR-MANIFOLDS [J].
Leung, Naichung Conan ;
Symington, Margaret .
JOURNAL OF SYMPLECTIC GEOMETRY, 2010, 8 (02) :143-187
[37]   Four-manifolds with surface fundamental groups [J].
Cavicchioli, A ;
Hegenbarth, F ;
Repovs, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :4007-4019
[38]   Kählerity of Einstein four-manifolds [J].
Li, Xiaolong ;
Zhang, Yongjia .
MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (01)
[39]   Hyperbolic four-manifolds with one cusp [J].
Alexander Kolpakov ;
Bruno Martelli .
Geometric and Functional Analysis, 2013, 23 :1903-1933
[40]   FOUR-MANIFOLDS WITHOUT EINSTEIN METRICS [J].
LeBrun, Claude .
MATHEMATICAL RESEARCH LETTERS, 1996, 3 (02) :133-147