Minimal nodal solutions of the pure critical exponent problem on a symmetric domain

被引:46
作者
Clapp, M
Weth, T
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Giessen, Math Inst, D-35392 Giessen, Germany
关键词
D O I
10.1007/s00526-003-0241-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish existence of nodal solutions to the pure critical exponent problem -Deltau = \u\(2*-2)u in Omega, u = 0 on partial derivativeOmega, where Omega a bounded smooth domain which is invariant under an orthogonal involution of R-N. We extend previous results for positive solutions due to Coron, Dancer, Ding, and Passaseo to existence and multiplicity results for solutions which change sign exactly once.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 25 条
[1]  
[Anonymous], DIFFERENTIAL INTEGRA
[2]  
[Anonymous], PNLDE
[3]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[4]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[5]  
Bahri A, 2001, COMMUN PUR APPL MATH, V54, P450, DOI 10.1002/1097-0312(200104)54:4<450::AID-CPA2>3.0.CO
[6]  
2-Y
[7]  
BARTSCH T, 2003, IN PRESS TOP METH NO
[8]  
Cao DM, 1995, INDIANA U MATH J, V44, P1249
[9]   Multiplicity of positive and nodal solutions for nonlinear elliptic problems in R(N) [J].
Cao, DM ;
Noussair, ES .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05) :567-588
[10]   The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain [J].
Castro, A ;
Clapp, M .
NONLINEARITY, 2003, 16 (02) :579-590