Differentiation of Lung Adenocarcinoma, Pleural Mesothelioma, and Nonmalignant Pulmonary Tissues Using DNA Methylation Profiles

被引:48
作者
Christensen, Brock C. [1 ,2 ]
Marsit, Carmen J. [2 ]
Houseman, E. Andres [1 ,3 ]
Godleski, John J. [4 ]
Longacker, Jennifer L. [5 ]
Zheng, Shichun [7 ]
Yeh, Ru-Fang [8 ]
Wrensch, Margaret R. [7 ]
Wiemels, Joseph L. [8 ]
Karagas, Margaret R. [9 ]
Bueno, Raphael [6 ]
Sugarbaker, David J. [6 ]
Nelson, Heather H. [10 ]
Wiencke, John K. [7 ]
Kelsey, Karl T. [1 ,2 ]
机构
[1] Brown Univ, Dept Community Hlth, Ctr Environm Hlth & Technol, Providence, RI 02903 USA
[2] Brown Univ, Dept Pathol & Lab Med, Providence, RI 02903 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Biostat, Cambridge, MA 02138 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Cambridge, MA 02138 USA
[5] Boston Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02215 USA
[6] Harvard Univ, Brigham & Womens Hosp, Sch Med, Div Thorac Surg, Boston, MA 02115 USA
[7] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
[9] Dartmouth Med Sch, Epidemiol & Biostat Sect, Dept Community & Family Med, Lebanon, NH USA
[10] Univ Minnesota, Masonic Canc Ctr, Div Epidemiol & Community Hlth, Minneapolis, MN USA
关键词
MALIGNANT MESOTHELIOMA; CPG ISLANDS; DIAGNOSIS; EXPOSURE; CANCER; BLOOD; CELLS; SMOKE;
D O I
10.1158/0008-5472.CAN-09-1073
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Pathologic differentiation of tissue of origin in tumors found in the lung can be challenging, with differentiation of mesothelioma and lung adenocarcinoma emblematic of this problem. Indeed, proper classification is essential for determination of treatment regimen for these diseases, making accurate and early diagnosis critical. Here, we investigate the potential of epigenetic profiles of lung adenocarcinoma, mesothelioma, and nonmalignant pulmonary tissues (n = 285) as differentiation markers in an analysis of DNA methylation at 1413 autosomal CpG loci associated with 773 cancer-related genes. Using an unsupervised recursively partitioned mixture modeling technique for all samples, the derived methylation profile classes were significantly associated with sample type (P < 0.0001). In a similar analysis restricted to tumors, methylation profile classes significantly predicted tumor type (P < 0.0001). Random forests classification of CpG methylation of tumors-which splits the data into training and test sets-accurately differentiated mesothelioma from lung adenocarcinoma over 99% of the time (P < 0.0001). In a locus-by-locus comparison of CpG methylation between tumor types, 1266 CpG loci had significantly different methylation between tumors following correction for multiple comparisons (Q < 0.05); 61% had higher methylation in adenocarcinoma. Using the CpG loci with significant differential methylation in a pathway analysis revealed significant enrichment of methylated gene-loci in Cell Cycle Regulation, DNA Damage Response, PTEN Signaling, and Apoptosis Signaling pathways in lung adenocarcinoma when compared with mesothelioma. Methylation profile-based differentiation of lung adenocarcinoma and mesothelioma is highly accurate, informs on the distinct etiologies of these diseases, and holds promise for clinical application. [Cancer Res 2009;69(15):6315-21]
引用
收藏
页码:6315 / 6321
页数:7
相关论文
共 35 条
  • [1] MALIGNANT MESOTHELIOMA
    ANTMAN, KH
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1980, 303 (04) : 200 - 202
  • [2] High-throughput DNA methylation profiling using universal bead arrays
    Bibikova, M
    Lin, ZW
    Zhou, LX
    Chudin, E
    Garcia, EW
    Wu, B
    Doucet, D
    Thomas, NJ
    Wang, YH
    Vollmer, E
    Goldmann, T
    Seifart, C
    Jiang, W
    Barker, DL
    Chee, MS
    Floros, J
    Fan, JB
    [J]. GENOME RESEARCH, 2006, 16 (03) : 383 - 393
  • [3] DNA methylation patterns and epigenetic memory
    Bird, A
    [J]. GENES & DEVELOPMENT, 2002, 16 (01) : 6 - 21
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Chang Michael Y, 2004, Thorac Surg Clin, V14, P523
  • [6] CHENG JQ, 1994, CANCER RES, V54, P5547
  • [7] Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma
    Christensen, Brock C.
    Godleski, John J.
    Marsit, Carmen J.
    Houseman, E. A.
    Lopez-Fagundo, Cristina Y.
    Longacker, Jennifer L.
    Bueno, Raphael
    Sugarbaker, David J.
    Nelson, Heather H.
    Kelsey, Karl T.
    [J]. CARCINOGENESIS, 2008, 29 (08) : 1555 - 1559
  • [8] Epigenetic Profiles Distinguish Pleural Mesothelioma from Normal Pleura and Predict Lung Asbestos Burden and Clinical Outcome
    Christensen, Brock C.
    Houseman, E. A.
    Godleski, John J.
    Marsit, Carmen J.
    Longacker, Jennifer L.
    Roelofs, Cora R.
    Karagas, Margaret R.
    Wrensch, Margaret R.
    Yeh, Ru-Fang
    Nelson, Heather H.
    Wiemels, Joe L.
    Zheng, Shichun
    Wiencke, John K.
    Bueno, Raphael
    Sugarbaker, David J.
    Kelsey, Karl T.
    [J]. CANCER RESEARCH, 2009, 69 (01) : 227 - 234
  • [9] Gordon GJ, 2002, CANCER RES, V62, P4963
  • [10] Alterations of the p16INK4 locus in human malignant mesothelial tumors
    Hirao, T
    Bueno, R
    Chen, CJ
    Gordon, GJ
    Heilig, E
    Kelsey, KT
    [J]. CARCINOGENESIS, 2002, 23 (07) : 1127 - 1130