An adaptive flow path regenerator used in supercritical carbon dioxide Brayton cycle

被引:24
|
作者
Ding, Miao [1 ]
Liu, Jian [1 ]
Cheng, Wen-Long [1 ]
Huang, Wen-Xu [1 ]
Liu, Qi-Nie [1 ]
Yang, Lei [1 ]
Liu, Shi-Yi [1 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China
关键词
Supercritical CO2; Adaptive flow path; Low-temperature regenerator; Numerical simulation; Experimental platform; CIRCUIT HEAT-EXCHANGER; POWER CYCLE; CO2; OPTIMIZATION; ARRANGEMENT; GENERATION; REACTORS; CHANNEL; FLUID;
D O I
10.1016/j.applthermaleng.2018.04.055
中图分类号
O414.1 [热力学];
学科分类号
摘要
The supercritical CO2 recompression Brayton cycle is proposed to be used as a typical application in 4th generation reactors. In the cycle, the performance of the regenerator has a significant impact on the performance of the entire cycle. As the specific heat capacity and density of SCO2 change significantly with the temperature and pressure. Therefore, in this paper, a new adaptive flow path regenerator is proposed and designed in order to further improve the performance of the regenerator, in which the flow path sizes varied with the CO2 density when the CO2 flowing through the regenerator. Firstly, the heat transfer performance and hydraulic performance of the adaptive flow path regenerators are analyzed in detail by simulation, and it is verified in theory that the design of new adaptive regenerator is feasible. Then, a new adaptive flow path regenerator with S-shaped fins is manufactured by metal 3D printing technology and the performances of the new regenerator are tested by a SCO2 experimental platform. The experimental results are consistent with simulation results and show that the performances of the new regenerator are significantly improved: the pressure loss can be reduced up to 69%, the effectiveness can be increased by nearly 2%, and the compactness and heat transfer rate can be improved at the same time.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 50 条
  • [1] SUPERCRITICAL CARBON DIOXIDE BRAYTON CYCLE DEVELOPMENT OVERVIEW
    Kimball, Kenneth J.
    Rahner, Kevin D.
    Nehrbauer, Joseph P.
    Clementoni, Eric M.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 8, 2013,
  • [2] STARTUP AND OPERATION OF A SUPERCRITICAL CARBON DIOXIDE BRAYTON CYCLE
    Clementoni, Eric M.
    Cox, Timothy L.
    Sprague, Christopher P.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 8, 2013,
  • [3] Startup and Operation of a Supercritical Carbon Dioxide Brayton Cycle
    Clementoni, Eric M.
    Cox, Timothy L.
    Sprague, Christopher P.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2014, 136 (07):
  • [4] Parameters optimization of supercritical carbon dioxide Brayton cycle
    Duan, Cheng-Jie
    Yang, Xiao-Yong
    Wang, Jie
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2011, 45 (12): : 1489 - 1494
  • [5] INTEGRATION AND OPTIMIZATION OF SUPERCRITICAL CARBON DIOXIDE BRAYTON CYCLE AND GOSWAMI CYCLE
    Guillen, Diego
    Leveni, Martina
    Manfrida, Giampaolo
    Sanjuan, Marco
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,
  • [6] TRANSIENT POWER OPERATION OF A SUPERCRITICAL CARBON DIOXIDE BRAYTON CYCLE
    Clementoni, Eric M.
    Cox, Timothy L.
    King, Martha A.
    Rahner, Kevin D.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 9, 2017,
  • [7] Features of supercritical carbon dioxide Brayton cycle coupled with reactor
    Duan, Cheng-Jie
    Wang, Jie
    Yang, Xiao-Yong
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2010, 44 (11): : 1341 - 1348
  • [8] A New Supercritical Carbon Dioxide Brayton Cycle with High Efficiency
    Purjam M.
    Goudarzi K.
    Keshtgar M.
    2017, John Wiley and Sons Inc (46): : 465 - 482
  • [9] Supercritical carbon dioxide Brayton cycle for concentrated solar power
    Garg, Pardeep
    Kumar, Pramod
    Srinivasan, Kandadai
    JOURNAL OF SUPERCRITICAL FLUIDS, 2013, 76 : 54 - 60
  • [10] Performance Improvement Overview of the Supercritical Carbon Dioxide Brayton Cycle
    Wang, Xurong
    Zhang, Longwei
    Zhu, Zhenhua
    Hu, Mingjiang
    Wang, Jing
    Fan, Xiaowei
    PROCESSES, 2023, 11 (09)