Infrared spectra of hydrogenated nanodiamonds by first-principles simulations

被引:8
作者
Zhuang, Chunqiang [1 ,2 ,3 ]
Jiang, Xue [1 ,2 ]
Zhao, Jijun [1 ,2 ]
Wen, Bin [3 ]
Jiang, Xin [4 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R China
[4] Univ Siegen, Inst Mat Engn, D-57076 Siegen, Germany
基金
中国国家自然科学基金;
关键词
Nanodiamond; Infrared; First-principles calculations; DIAMOND NANOCRYSTAL SURFACES; CHEMICAL-VAPOR-DEPOSITION; CH STRETCHING FEATURES; INTERSTELLAR DIAMONDS; DETONATION SYNTHESIS; RELATIVE STABILITY; SPECTROSCOPY; SIZE; FILMS; NANOPARTICLES;
D O I
10.1016/j.physe.2009.04.011
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The heat of formation and infrared spectra of hydrogenated nanodiamonds with different morphologies (up to 1.92 nm in diameter) have been investigated using density functional theory. Preferential growth orientation along < 111 > orientations corresponding to an octahedral shape was observed according to the computed heat of formation. The simulated infrared (IR) spectra show distinct dependence on both size and morphology of the nanodiamonds. The major IR peaks in the region of 900-1300 cm(-1), shift toward high wavenumber as the nanocluster size increases, while the C-H vibrations in the range 2500-3500 cm(-1) show an opposite trend. The present results would be useful for identifying the size and morphology of nanodiamonds in experimental IR spectroscopy. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1427 / 1432
页数:6
相关论文
共 50 条
[31]   Infrared and Raman spectra of disordered materials from first principles [J].
Umari, P ;
Pasquarello, A .
DIAMOND AND RELATED MATERIALS, 2005, 14 (08) :1255-1261
[32]   First-principles spectra of Au nanoparticles: from quantum to classical absorption [J].
Hernandez, Samuel ;
Xia, Yantao ;
Vicek, Vojtech ;
Boutelle, Robert ;
Baer, Roi ;
Rabani, Eran ;
Neuhauser, Daniel .
MOLECULAR PHYSICS, 2018, 116 (19-20) :2506-2511
[33]   ~Raman spectra characterization of boron carbide using first-principles calculations [J].
Sahu, Tanay ;
Bhattacharyya, Abir ;
Gandi, Appala Naidu .
PHYSICA B-CONDENSED MATTER, 2022, 633
[34]   Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations [J].
Rey, Michael ;
Nikitin, Andrei V. ;
Tyuterev, Vladimir G. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (04)
[35]   Distinguishing different edge structures of graphene nanoribbons with Raman spectra, studied by first-principles calculations [J].
Yan, Kun ;
Li, Zhibing ;
Wang, Weiliang .
JOURNAL OF RAMAN SPECTROSCOPY, 2022, 53 (06) :1062-1069
[36]   First-Principles Study of Confinement Effects on the Raman Spectra of Si Nanocrystals [J].
Khoo, K. H. ;
Zayak, A. T. ;
Kwak, H. ;
Chelikowsky, James R. .
PHYSICAL REVIEW LETTERS, 2010, 105 (11)
[37]   Infrared signatures of OH-defects in wadsleyite: A first-principles study [J].
Blanchard, Marc ;
Roberge, Mathilde ;
Balan, Etienne ;
Fiquet, Guillaume ;
Bureau, Helene .
AMERICAN MINERALOGIST, 2013, 98 (11-12) :2132-2143
[38]   Vibrationally-Resolved X-ray Photoelectron Spectra of Six Polycyclic Aromatic Hydrocarbons from First-Principles Simulations [J].
Cheng, Xiao ;
Wei, Minrui ;
Tian, Guangjun ;
Luo, Yi ;
Hua, Weijie .
JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (33) :5582-5593
[39]   Stability and Electronic Properties of Hydrogenated MoS2 Mono layer: A First-Principles Study [J].
Zhang, Weibin ;
Zhang, Zhijun ;
Yang, Woochul .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (10) :8075-8080
[40]   First-principles density-functional investigation on the electronic properties and field emission of a hydrogenated nanodiamond [J].
Wang, C. ;
Zheng, B. ;
Zheng, W. T. ;
Qu, C. Q. ;
Qiao, L. ;
Yu, S. S. ;
Jiang, Q. .
DIAMOND AND RELATED MATERIALS, 2009, 18 (10) :1310-1315