LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries

被引:264
|
作者
Martha, S. K. [1 ]
Markovsky, B. [1 ]
Grinblat, J. [1 ]
Gofer, Y. [1 ]
Haik, O. [1 ]
Zinigrad, E. [1 ]
Aurbach, D. [1 ]
Drezen, T. [2 ]
Wang, D. [2 ]
Deghenghi, G. [2 ]
Exnar, I. [2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Ecole Polytech Fed Lausanne, PSE B, High Power Lithium SA, CH-1015 Lausanne, Switzerland
基金
以色列科学基金会;
关键词
ELECTROCHEMICAL PERFORMANCE; INTERCALATION PROCESSES; PHOSPHO-OLIVINES; PARTICLE-SIZE; LIXMPO4; M; ELECTROLYTE; INTERFACE; STABILITY; KEY; FE;
D O I
10.1149/1.3125765
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiMnPO4 nanoparticles synthesized by the polyol method were examined as a cathode material for advanced Li-ion batteries. The structure, surface morphology, and performance were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, Raman, Fourier transform IR, and photoelectron spectroscopies, and standard electrochemical techniques. A stable reversible capacity up to 145 mAh g(-1) could be measured at discharge potentials > 4 V vs Li/Li+, with a reasonable capacity retention during prolonged charge/discharge cycling. The rate capability of the LiMnPO4 electrodes studied herein was higher than that of LiNi0.5Mn0.5O2 and LiNi0.8Co0.15Al0.05O2 (NCA) in similar experiments and measurements. The active mass studied herein seems to be the least surface reactive in alkyl carbonate/LiPF6 solutions. We attribute the low surface activity of this material, compared to the lithiated transition-metal oxides that are examined and used as cathode materials for Li-ion batteries, to the relatively low basicity and nucleophilicity of the oxygen atoms in the olivine compounds. The thermal stability of the LiMnPO4 material in solutions (measured by differential scanning calorimetry) is much higher compared to that of transition-metal oxide cathodes. This is demonstrated herein by a comparison with NCA electrodes. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3125765] All rights reserved.
引用
收藏
页码:A541 / A552
页数:12
相关论文
共 50 条
  • [31] LiMn0.8Fe0.2PO4: An Advanced Cathode Material for Rechargeable Lithium Batteries
    Martha, Surendra K.
    Grinblat, Judith
    Haik, Ortal
    Zinigrad, Ella
    Drezen, Thierry
    Miners, James H.
    Exnar, Ivan
    Kay, Andreas
    Markovsky, Boris
    Aurbach, Doron
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (45) : 8559 - 8563
  • [32] Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries
    Huang, Qiao-Ying
    Wu, Zhi
    Su, Jing
    Long, Yun-Fei
    Lv, Xiao-Yan
    Wen, Yan-Xuan
    CERAMICS INTERNATIONAL, 2016, 42 (09) : 11348 - 11354
  • [33] Interfacial Phenomena at a Composite LiMnPO4 Cathode
    Norberg, Nick S.
    Kostecki, Robert
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) : A1091 - A1094
  • [34] FTIR spectroscopy of a LiMnPO4 composite cathode
    Norberg, Nick S.
    Kostecki, Robert
    ELECTROCHIMICA ACTA, 2011, 56 (25) : 9168 - 9171
  • [35] A novel polyquinone cathode material for rechargeable lithium batteries
    Zhao, Lei
    Wang, Weikun
    Wang, Anbang
    Yuan, Keguo
    Chen, Shi
    Yang, Yusheng
    JOURNAL OF POWER SOURCES, 2013, 233 : 23 - 27
  • [36] The Degradation Mechanism of a Composite LiMnPO4 Cathode
    Norberg, Nick S.
    Kostecki, Robert
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) : A1431 - A1434
  • [37] Hydrothermal synthesis of 3D-hierarchical hemoglobin-like LiMnPO4 microspheres as cathode materials for lithium ion batteries
    Gu, Yuanxiang
    Wang, Haolin
    Zhu, Yujing
    Wang, Lei
    Qian, Yi
    Chu, Yongbao
    SOLID STATE IONICS, 2015, 274 : 106 - 110
  • [38] Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries
    Ren, Yu
    Bruce, Peter G.
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 17 : 60 - 62
  • [39] Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries
    Qin, Zhihong
    Zhou, Xufeng
    Xia, Yonggao
    Tang, Changlin
    Liu, Zhaoping
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (39) : 21144 - 21153
  • [40] Vanadium doping of LiMnPO4 cathode material: Correlation between changes in the material lattice and the enhancement of the electrochemical performance
    Vasquez, F. A.
    Calderon, J. A.
    ELECTROCHIMICA ACTA, 2019, 325