GaN Schottky barrier photodiode on Si (111) with low-temperature-grown cap layer

被引:20
作者
Chuah, L. S. [1 ]
Hassan, Z. [1 ]
Hassan, H. Abu [1 ]
Ahmed, N. M. [2 ]
机构
[1] Univ Sains Malaysia, Sch Phys, George Town 11800, Malaysia
[2] Univ Malaysia Perlis, Sch Microelect Engn, Perlis 02600, Malaysia
关键词
AlN; GaN; Photodiode; Schottky barrier height; Thermal annealing; N-TYPE GAN; ELECTRICAL-PROPERTIES; CONTACTS; PHOTODETECTORS; INSULATOR;
D O I
10.1016/j.jallcom.2009.02.151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, GaN films were grown on three-inch silicon substrates by plasma-assisted molecular beam epitaxy (PAMBE) with AlN (about 200 nm) as the buffer layer. Finally, a thin AlN cap layer (50 nm) was grown on the GaN surface. Current-voltage (I-V) measurements before and after heat treatment were carried out. Different annealing temperatures (500-700 degrees C) were investigated. Under dark condition, the Schottky barrier height (SBH) derived by the I-V method is 0.48 eV for as-deposited Ni/AlN/GaN/AlN Schottky diode. On the other hand, the effective barrier heights of 0.52, 0.55, and 0.57 eV were obtained for Schottky diodes annealed at 500, 600, and 700 degrees C, respectively. We found that the SBHs of annealed Schottky diodes under dark and illuminated conditions were observed to be higher relative to the as-deposited Schottky diode. When annealed at 700 degrees C, the resulting Schottky diodes show a dark current of as low as 5.05 x 10(-5) A at 10 V bias, which is about two orders of magnitude lower than that of as-deposited Ni/AlN/GaN/AlN Schottky diode (2.37 x 10(-3) A at 10 V bias). When the sample was under illumination condition, the change of current was significant for the annealed samples as compared to the as-deposited sample. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:L15 / L19
页数:5
相关论文
共 24 条
[1]   Characterization of AlN metal-semiconductor-metal diodes in the spectral range of 44-360 nm: Photoemission assessments [J].
BenMoussa, A. ;
Hochedez, J. F. ;
Dahal, R. ;
Li, J. ;
Lin, J. Y. ;
Jiang, H. X. ;
Soltani, A. ;
De Jaeger, J. -C. ;
Kroth, U. ;
Richter, M. .
APPLIED PHYSICS LETTERS, 2008, 92 (02)
[2]  
Bondar V, 1999, PHYS STATUS SOLIDI A, V176, P329, DOI 10.1002/(SICI)1521-396X(199911)176:1<329::AID-PSSA329>3.0.CO
[3]  
2-E
[4]   Low interface trap density for remote plasma deposited SiO2 on n-type GaN [J].
Casey, HC ;
Fountain, GG ;
Alley, RG ;
Keller, BP ;
DenBaars, SP .
APPLIED PHYSICS LETTERS, 1996, 68 (13) :1850-1852
[5]   GaN Schottky photodiodes with annealed Ir/Pt semi-transparent contacts [J].
Chang, P. C. ;
Yu, C. L. ;
Chang, S. J. ;
Liu, C. H. .
THIN SOLID FILMS, 2008, 516 (10) :3324-3327
[6]   Schottky barrier detectors on GaN for visible-blind ultraviolet detection [J].
Chen, Q ;
Yang, JW ;
Osinsky, A ;
Gangopadhyay, S ;
Lim, B ;
Anwar, MZ ;
Khan, MA ;
Kuksenkov, D ;
Temkin, H .
APPLIED PHYSICS LETTERS, 1997, 70 (17) :2277-2279
[7]   AlN/AlGaN/GaN metal insulator semiconductor heterostructure field effect transistor [J].
Cho, DH ;
Shimizu, M ;
Ide, T ;
Ookita, H ;
Okumura, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2002, 41 (7A) :4481-4483
[8]   Large area GaN metal semiconductor metal (MSM) photodiode using a thin low temperature GaN cap layer [J].
Chuah, L. S. ;
Hassan, Z. ;
Abu Hassan, H. ;
Chin, C. W. ;
Thahab, S. M. .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2008, 17 (01) :59-69
[9]  
CHUAH LS, INT J MOD B IN PRESS
[10]  
DAGAR A, 2006, J CRYST GROWTH, V297, P306