Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery

被引:100
|
作者
Zhang, Yunyang [1 ,2 ]
Sun, Yulong [1 ]
Peng, Linfeng [1 ]
Yang, Jiaqiang [2 ]
Jia, Huanhuan [1 ,2 ]
Zhang, Zhuoran [1 ,2 ]
Shan, Bin [2 ]
Xie, Jia [1 ]
机构
[1] Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国博士后科学基金;
关键词
All-solid-state battery; Lithium-sulfur; Se-doping; Sulfurized polyacrylonitrile; Eutectic accelerator; COMPOSITE CATHODE MATERIALS; HIGH-CAPACITY; STABLE-CYCLE; ELECTRODE; BARRIER;
D O I
10.1016/j.ensm.2018.12.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing liquid electrolyte by solid electrolyte to construct all-solid-state Li-S battery can overcome the safety issue, polysulfide dissolution and presumably lithium dendrite formation, but usually lead to poor rate performance and low S utilization due to the poor Li-ion/electronic conduction resulting from solid-solid interfacial problems. Sulfurized polyacrylonitrile (S@pPAN) is a good sulfur cathode candidate showing excellent results in liquid electrolytes but still limited performance in all-solid-state batteries. Herein, selenium is used in S@pPAN as a eutectic accelerator which can be uniformly distributed into the composite at molecular level through Se-S bonding and accelerate reaction kinetics while contributing capacity at the same time. It is shown that the Li ion diffusion and electronic conduction are tremendously improved by 5 mol% Se-doping in all-solid-state lithium-sulfur batteries. At room temperature, the Se0.05S0.95@pPAN with 5 mg cm(-2) cathode loading (1 mg cm(-2) Sulfur loading) deliveres an initial reversible capacity of 840 mA h g(-1) at current density of 167.5 mA g(-1) and high capacity retention of 81% for 150 cycles, and significantly improved rate performance comparing to traditional S@pPAN. The good Li ion and electronic conductivity of Se0.05S0.95@pPAN is pivotal for high performance all-solid-state Li-S battery and the use of the eutectic accelerator is a general and promising way to improve sulfur cathode performance in all-solid-state batteries.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条
  • [21] Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery
    Chen, Fei
    Zhang, Gang
    Zhang, Yiluo
    Cao, Shiyu
    Li, Jun
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (03) : 362 - 368
  • [22] Polythiocyanogen as Cathode Materials for High Temperature All-Solid-State Lithium-Sulfur Batteries
    Wang, Shen
    Zhou, Jianbin
    Feng, Shijie
    Patel, Maansi
    Lu, Bingyu
    Li, Weikang
    Soulen, Charles
    Feng, Jiaqi
    Meng, Ying Shirley
    Liu, Ping
    ACS ENERGY LETTERS, 2023, 8 (06) : 2699 - 2706
  • [23] A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery
    Zhu, Yuewu
    Li, Jie
    Liu, Jin
    JOURNAL OF POWER SOURCES, 2017, 351 : 17 - 25
  • [24] Recent advances in cathodes for all-solid-state lithium-sulfur batteries
    Shengbo Yang
    Bo Wang
    Qiang Lv
    Nan Zhang
    Zekun Zhang
    Yutong Jing
    Jinbo Li
    Rui Chen
    Bochen Wu
    Pengfei Xu
    Dianlong Wang
    Chinese Chemical Letters, 2023, 34 (07) : 84 - 95
  • [25] Recent advances in cathodes for all-solid-state lithium-sulfur batteries
    Yang, Shengbo
    Wang, Bo
    Lv, Qiang
    Zhang, Nan
    Zhang, Zekun
    Jing, Yutong
    Li, Jinbo
    Chen, Rui
    Wu, Bochen
    Xu, Pengfei
    Wang, Dianlong
    CHINESE CHEMICAL LETTERS, 2023, 34 (07)
  • [26] Understanding Decomposition of Electrolytes in All-Solid-State Lithium-Sulfur Batteries
    Gamo, Hirotada
    Hikima, Kazuhiro
    Matsuda, Atsunori
    CHEMISTRY OF MATERIALS, 2022, 34 (24) : 10952 - 10963
  • [27] All-Solid-State Thin-Film Lithium-Sulfur Batteries
    Renming Deng
    Bingyuan Ke
    Yonghui Xie
    Shoulin Cheng
    Congcong Zhang
    Hong Zhang
    Bingan Lu
    Xinghui Wang
    Nano-Micro Letters, 2023, 15
  • [28] All-Solid-State Thin-Film Lithium-Sulfur Batteries
    Deng, Renming
    Ke, Bingyuan
    Xie, Yonghui
    Cheng, Shoulin
    Zhang, Congcong
    Zhang, Hong
    Lu, Bingan
    Wang, Xinghui
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [29] All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators
    Gao, Xin
    Zheng, Xueli
    Tsao, Yuchi
    Zhang, Pu
    Xiao, Xin
    Ye, Yusheng
    Li, Jun
    Yang, Yufei
    Xu, Rong
    Bao, Zhenan
    Cui, Yi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (43) : 18188 - 18195
  • [30] All-Solid-State Thin-Film Lithium-Sulfur Batteries
    Renming Deng
    Bingyuan Ke
    Yonghui Xie
    Shoulin Cheng
    Congcong Zhang
    Hong Zhang
    Bingan Lu
    Xinghui Wang
    Nano-Micro Letters, 2023, 15 (05) : 332 - 344