Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury

被引:146
|
作者
Bai, Yun [1 ,2 ]
Han, Yu-di [2 ,3 ]
Yan, Xin-long [4 ,5 ]
Ren, Jing [2 ,3 ]
Zeng, Quan [4 ]
Li, Xiao-dong [3 ,6 ]
Pei, Xue-tao [4 ]
Han, Yan [2 ]
机构
[1] Nankai Univ, Sch Med, Tianjin, Peoples R China
[2] Peoples Liberat Army Gen Hosp, Dept Plast & Reconstruct Surg, Beijing 100853, Peoples R China
[3] Chinese PLA, Sch Med, Beijing 100853, Peoples R China
[4] Beijing Inst Transfus Med, Stern Cell & Regenerat Med Lab, 27 Taiping Rd, Beijing 100850, Peoples R China
[5] Beijing Univ Technol, Life Sci & Bioengn Dept, Beijing 100124, Peoples R China
[6] Bethune Int Peace Hosp, Burn & Plast Surg, Shijiazhuang 050000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Skin flap transplantation; lschemia-reperfusion injury; Adipose-derived stem cells; Exosomes; Hydrogen peroxide; Neovascularization; ANGIOGENESIS;
D O I
10.1016/j.bbrc.2018.04.065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of ischemic disease or injury and may be an alternative treatment for cell therapy. This aim of the study was to evaluate whether exosomes derived from adipose mesenchymal stem cell (ADSC) can protect the skin flap during ischemia-reperfusion (I/R) injury and induce neovascularization. Methods: To investigate the effects of exosomes in the I/R injury of flap transplantation in vivo, flaps were subjected to 6 h of ischemia by ligating the left superficial inferior epigastric vessels (SIEA) followed by blood perfusion. Exosomes derived from normal ADSC (ADSC-exos) and exosomes derived from ADSC preconditioned with H2O2 (H2O2-ADSC-exos) were injected into the flaps. Then, the blood perfusion unit (BPU) of the flaps was measured by Laser Doppler Perfusion Imaging (LDPI) and microvessel density was determined by the endothelial with cell marker CD31 with Immunohistochemistry (IHC) staining. Inflammatory cell infiltration of the skin flap and apoptosis were detected by hematoxylin & eosin staining (H&E) and the TdT-mediated biotinylated dUTP nick end-labeling (TUNEL) technique. Results: In vivo, exosomes significantly increased flap survival and capillary density compared to I/R on postoperative day 5, and decreased the inflammatory reaction and apoptosis in the skin flap (P < 0.05). Furthermore, H2O2-ADSC-exos had better outcomes compared to normal exosomes (P < 0.05). ADSC-exos could significantly increase human umbilical vein endothelial cell (HUVEC) proliferation (P < 0.05), but no statistic difference was found in exosomes derived from different microenvironments (P > 0.05). HUVEC co-cultured with H2O2-ADSC-exos increased the migration ratio and generated more cord-like structures compared to ADSC-exos and the control group (P < 0.05). Conclusion: ADSC-exos can enhance skin flap survival, promote neovascularization and alleviate the inflammation reaction and apoptosis in the skin flap after I/R injury. The use of a specific microenvironment for in vitro stem cell culture, such as one containing a low concentration of H2O2, will facilitate the development of customized exosomes for cell-free therapeutic applications in skin flap transplantation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:310 / 317
页数:8
相关论文
共 50 条
  • [11] Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats
    Nong, Kate
    Wang, Weiwei
    Niu, Xin
    Hu, Bin
    Ma, Chenchao
    Bai, Yueqing
    Wu, Bo
    Wang, Yang
    Ai, Kaixing
    CYTOTHERAPY, 2016, 18 (12) : 1548 - 1559
  • [12] Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing
    Heo, June Seok
    Kim, Sinyoung
    Yang, Chae Eun
    Choi, Youjeong
    Song, Seung Yong
    Kim, Hyun Ok
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2021, 18 (04) : 537 - 548
  • [13] Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing
    June Seok Heo
    Sinyoung Kim
    Chae Eun Yang
    Youjeong Choi
    Seung Yong Song
    Hyun Ok Kim
    Tissue Engineering and Regenerative Medicine, 2021, 18 : 537 - 548
  • [14] Brain Microvascular Endothelial Cell-Derived Exosomes Protect Neurons from Ischemia-Reperfusion Injury in Mice
    Sun, Jin
    Yuan, Qing
    Guo, Lichen
    Xiao, Guangxu
    Zhang, Tong
    Liang, Bing
    Yao, Rongmei
    Zhu, Yan
    Li, Yue
    Hu, Limin
    PHARMACEUTICALS, 2022, 15 (10)
  • [15] Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair
    Ren, Zhihua
    Qi, Yao
    Sun, Siyuan
    Tao, Yuanyuan
    Shi, Riyi
    STEM CELLS AND DEVELOPMENT, 2020, 29 (23) : 1467 - 1478
  • [16] Brain Endothelial Cell-Derived Exosomes Induce Neuroplasticity in Rats with Ischemia/Reperfusion Injury
    Gao, Beiyao
    Zhou, Shaoting
    Sun, Chengcheng
    Cheng, Dandan
    Zhang, Ye
    Li, Xutong
    Zhang, Li
    Zhao, Jing
    Xu, Dongsheng
    Bai, Yulong
    ACS CHEMICAL NEUROSCIENCE, 2020, 11 (15): : 2201 - 2213
  • [17] Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy
    Ren, Haiyue
    Su, Peng
    Zhao, Feng
    Zhang, Qiqi
    Huang, Xing
    He, Cai
    Wu, Quan
    Wang, Zitong
    Ma, Jiajie
    Wang, Zhe
    BURNS & TRAUMA, 2024, 12
  • [18] Vascular Endothelial Cell-derived Exosomes Protect Neural Stem Cells Against Ischemia/reperfusion Injury
    Zhou, Shaoting
    Gao, Beiyao
    Sun, Chengcheng
    Bai, Yulong
    Cheng, Dandan
    Zhang, Ye
    Li, Xutong
    Zhao, Jing
    Xu, Dongsheng
    NEUROSCIENCE, 2020, 441 : 184 - 196
  • [19] Bone Marrow Mesenchymal Stem Cell-Derived Hepatocyte-Like Cell Exosomes Reduce Hepatic Ischemia/Reperfusion Injury by Enhancing Autophagy
    Yang, Bo
    Duan, Wu
    Wei, Lai
    Zhao, Yuanyuan
    Han, Zhenyi
    Wang, Jin
    Wang, Meixi
    Dai, Chen
    Zhang, Bo
    Chen, Dong
    Chen, Zhishui
    STEM CELLS AND DEVELOPMENT, 2020, 29 (06) : 372 - 379
  • [20] Adipose Mesenchymal Stem Cell-Derived Exosomes as Nanocarriers for Treating Musculoskeletal Disorders
    Tang, Ao
    Shu, Qing
    Jia, Shaohui
    Lai, Zhihao
    Tian, Jun
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2024, 19 : 13547 - 13562