Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

被引:84
作者
Brito, J. [1 ]
Rizzo, L. V. [2 ]
Morgan, W. T. [3 ]
Coe, H. [3 ]
Johnson, B. [4 ]
Haywood, J. [4 ,5 ]
Longo, K. [6 ]
Freitas, S. [6 ]
Andreae, M. O. [7 ]
Artaxo, P. [1 ]
机构
[1] Univ Sao Paulo, Inst Phys, Sao Paulo, Brazil
[2] Univ Fed Sao Paulo, Dept Earth & Exact Sci, Diadema, Brazil
[3] Univ Manchester, Sch Earth Atmospher & Environm Sci, Ctr Atmospher Sci, Manchester, Lancs, England
[4] UK Met Off, Exeter, Devon, England
[5] Univ Exeter, Coll Engn Maths & Phys Sci, Exeter, Devon, England
[6] Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil
[7] Max Planck Inst Chem, Biogeochem Dept, D-55128 Mainz, Germany
基金
英国自然环境研究理事会; 巴西圣保罗研究基金会;
关键词
POSITIVE MATRIX FACTORIZATION; LAND-USE CHANGE; ORGANIC AEROSOL; MASS-SPECTROMETER; AMAZON BASIN; COLLECTION EFFICIENCIES; ATMOSPHERIC AEROSOLS; PHYSICAL-PROPERTIES; LIGHT-ABSORPTION; MEXICO-CITY;
D O I
10.5194/acp-14-12069-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondonia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from similar to 1000 cm(-3) to peaks of up to 35 000 cm(-3) (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 mu g m(-3) and peak concentrations close to 100 mu g m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concen-tration of 11.4 mu g m(-3). The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 mu g m(-3), respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 mu g m(-3), with an average concentration of 1.3 mu g m(-3). During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C congruent to D 0 : 25 to O : C congruent to D 0 : 6), no remarkable change is observed in the H : C ratio (similar to 1 : 35). Such a result contrasts strongly with previous observations of chemical ageing of both urban and Amazonian biogenic aerosols. At higher levels of processing (O : C > 0 : 6), the H : C ratio changes with a H : C / O : C slope of -0.5, possibly due to the development of a combination of BB (H : C / O : C slope D 0) and biogenic (H : C / O : C slope D 1) organic aerosol (OA). An analysis of the Delta OA / Delta CO mass ratios yields very little enhancement in the OA loading with atmospheric processing, consistent with previous observations. These results indicate that negligible secondary organic aerosol (SOA) formation occurs throughout the observed BB plume processing, or that SOA formation is almost entirely balanced by OA volatilization. Positive matrix factorization (PMF) of the organic aerosol spectra resulted in three factors: fresh BBOA, aged BBOA, and low-volatility oxygenated organic aerosol (LV-OOA). Analysis of the diurnal patterns and correlation with external markers indicates that during the first part of the campaign, OA concentrations are impacted by local fire plumes with some chemical processing occurring in the near-surface layer. During the second part of the campaign, long-range transport of BB plumes above the surface layer, as well as potential SOAs formed aloft, dominates OA concentrations at our ground-based sampling site. This manuscript describes the first ground-based deployment of the aerosol mass spectrometry at a site heavily impacted by biomass burning in the Amazon region, allowing a deeper understanding of aerosol life cycle in this important ecosystem.
引用
收藏
页码:12069 / 12083
页数:15
相关论文
共 69 条
[1]   Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction [J].
Aiken, A. C. ;
de Foy, B. ;
Wiedinmyer, C. ;
DeCarlo, P. F. ;
Ulbrich, I. M. ;
Wehrli, M. N. ;
Szidat, S. ;
Prevot, A. S. H. ;
Noda, J. ;
Wacker, L. ;
Volkamer, R. ;
Fortner, E. ;
Wang, J. ;
Laskin, A. ;
Shutthanandan, V. ;
Zheng, J. ;
Zhang, R. ;
Paredes-Miranda, G. ;
Arnott, W. P. ;
Molina, L. T. ;
Sosa, G. ;
Querol, X. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) :5315-5341
[2]   O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry [J].
Aiken, Allison C. ;
Decarlo, Peter F. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. ;
Huffman, J. Alex ;
Docherty, Kenneth S. ;
Ulbrich, Ingrid M. ;
Mohr, Claudia ;
Kimmel, Joel R. ;
Sueper, Donna ;
Sun, Yele ;
Zhang, Qi ;
Trimborn, Achim ;
Northway, Megan ;
Ziemann, Paul J. ;
Canagaratna, Manjula R. ;
Onasch, Timothy B. ;
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Dommen, Josef ;
Duplissy, Jonathan ;
Metzger, Axel ;
Baltensperger, Urs ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4478-4485
[3]   Evolution of trace gases and particles emitted by a chaparral fire in California [J].
Akagi, S. K. ;
Craven, J. S. ;
Taylor, J. W. ;
McMeeking, G. R. ;
Yokelson, R. J. ;
Burling, I. R. ;
Urbanski, S. P. ;
Wold, C. E. ;
Seinfeld, J. H. ;
Coe, H. ;
Alvarado, M. J. ;
Weise, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (03) :1397-1421
[4]   Identification of the mass spectral signature of organic aerosols from wood burning emissions [J].
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Szidat, Sonke ;
Sandradewi, Jisca ;
Weimer, Silke ;
Lanz, Valentin A. ;
Schreiber, Daniel ;
Mohr, Martin ;
Baltensperger, Urs .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (16) :5770-5777
[5]   A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data [J].
Allan, JD ;
Delia, AE ;
Coe, H ;
Bower, KN ;
Alfarra, MR ;
Jimenez, JL ;
Middlebrook, AM ;
Drewnick, F ;
Onasch, TB ;
Canagaratna, MR ;
Jayne, JT ;
Worsnop, DR .
JOURNAL OF AEROSOL SCIENCE, 2004, 35 (07) :909-922
[6]   Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons [J].
Andreae, M. O. ;
Artaxo, P. ;
Beck, V. ;
Bela, M. ;
Freitas, S. ;
Gerbig, C. ;
Longo, K. ;
Munger, J. W. ;
Wiedemann, K. T. ;
Wofsy, S. C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (13) :6041-6065
[7]   Aerosols before pollution [J].
Andreae, Meinrat O. .
SCIENCE, 2007, 315 (5808) :50-51
[8]   Smoking rain clouds over the Amazon [J].
Andreae, MO ;
Rosenfeld, D ;
Artaxo, P ;
Costa, AA ;
Frank, GP ;
Longo, KM ;
Silva-Dias, MAF .
SCIENCE, 2004, 303 (5662) :1337-1342
[9]   Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region [J].
Andreae, MO ;
Artaxo, P ;
Fischer, H ;
Freitas, SR ;
Grégoire, JM ;
Hansel, A ;
Hoor, P ;
Kormann, R ;
Krejci, R ;
Lange, L ;
Lelieveld, J ;
Lindinger, W ;
Longo, K ;
Peters, W ;
de Reus, M ;
Scheeren, B ;
Dias, MAFS ;
Ström, J ;
van Velthoven, PFJ ;
Williams, J .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (06) :951-954
[10]  
[Anonymous], AMS SPECTRAL DATABAS