The shear mode crack growth mechanism in 1050 aluminium was investigated using pre-cracked specimens. A small blind hole was drilled in the centre section of the specimens in order to predetermine the crack initiation position, and a push-pull fatigue test was used to make a pre-crack. Crack propagation tests were carried out using both push-pull and cyclic torsion with a static axial load. With push-pull testing, the main crack grew by a mixed mode. It is thus apparent that shear deformation affects the fatigue crack growth in pure aluminium. In tests using cyclic torsion, the fatigue crack grew by a shear mode. The micro-cracks initiated perpendicular and parallel to the main crack's growth direction during the cyclic torsion tests. However, the growth direction of the main crack was not changed by the coalescence of the main crack and the micro-cracks. Shear mode crack growth tends to occur in aluminium. The crack growth behaviour is related to a material's slip systems. The number of slip planes in aluminium is smaller than that of steel and the friction stress during edge dislocation motion of aluminium is lower than many other materials. Correlation between the crack propagation rate and the stress intensity factor range was almost the same in both push-pull and cyclic torsion with tension in this study.
机构:
Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510
Kikuchi M.
Wada Y.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510
Wada Y.
Suga K.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510
Suga K.
Ohdama C.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510
Ohdama C.
Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A,
2010,
76
(772):
: 1674
-
1680
机构:
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, GuwahatiDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati
Sajith S.
Krishna Murthy K.S.R.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, GuwahatiDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati
Krishna Murthy K.S.R.
Robi P.S.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, GuwahatiDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati