On multivariate projection operators

被引:20
作者
Szili, L. [2 ]
Vertesi, P. [1 ]
机构
[1] Hungarian Acad Sci, Renyi Math Inst, H-1053 Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
关键词
Rectangular partial sums; Triangular partial sums; Operator norm of the multivariate Fourier series; Projection operators; FOURIER-SERIES; INTERPOLATION;
D O I
10.1016/j.jat.2008.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with multivariate Fourier series considering triangular type partial sums. Among others we give the exact order of the corresponding operator norm. Moreover, a generalization of the so-called Faber-Marcinkiewicz-Berman theorem has been proved. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 164
页数:11
相关论文
共 17 条
  • [1] [Anonymous], MAT TERM ERTESITO
  • [2] [Anonymous], 1911, ANN SCI ECOLE NORM S, DOI DOI 10.24033/ASENS.634
  • [3] Berens H, 1996, MATH Z, V221, P449, DOI 10.1007/BF02622126
  • [4] On the Lebesgue constant for the Xu interpolation formula
    Bos, Len
    De Marchi, Stefano
    Vianello, Marco
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 141 (02) : 134 - 141
  • [5] DELLAVECCHIA B, STUDIA SCI IN PRESS
  • [6] Devore R. A ..., 1993, Constructive Approximation
  • [7] Dunford N., 1988, LINEAR OPERATIONS 1
  • [8] HALASZ GJ, COMMUNICATION
  • [9] Herriot J., 1944, Duke Math. J., V11, P735
  • [10] Summability of product Jacobi expansions
    Li, ZK
    Xu, Y
    [J]. JOURNAL OF APPROXIMATION THEORY, 2000, 104 (02) : 287 - 301